Publications by authors named "Claudia Senn"

15 Publications

  • Page 1 of 1

Calculation of an Apical Efflux Ratio from P-Glycoprotein (P-gp) In Vitro Transport Experiments Shows an Improved Correlation with In Vivo Cerebrospinal Fluid Measurements in Rats: Impact on P-gp Screening and Compound Optimization.

J Pharmacol Exp Ther 2021 Mar 7;376(3):322-329. Epub 2020 Dec 7.

Roche Pharmaceutical Research and Early Development, DMPK/PD project leader (H.F.), Comparative Pharmacology (C.S.), Investigative Safety, Pharmaceutical Sciences (M.U., C.C.), and Immunology, Infectious Disease and Ophthalmology (F.S.), Roche Innovation Center, Basel, Switzerland; and Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Translational and Clinical Research Center, Inc., and LIYU Pharmaceutical Consulting LCC, New Jersey, USA (L.Y.).

P-glycoprotein (P-gp) is a major blood-brain barrier (BBB) efflux transporter. In vitro approaches, including bidirectional efflux ratio (ER), are used to measure P-gp-mediated transport, but findings can be inconsistent across models. We propose a novel, more physiologically relevant, in vitro model: unidirectional apical efflux ratio (AP-ER)-a ratio of permeability rates at the apical side of the BBB with and without P-gp inhibitor. To test our approach, ER and AP-ER were calculated for 3227 structurally diverse compounds in porcine kidney epithelial cells (LLC-PK1) overexpressing human or mouse P-gp and classified based on their passive transcellular P-gp permeability or charged properties. In vivo rat infusion studies were performed for selected compounds with high ER but low AP-ER. One-third of the 3227 compounds had bidirectional ER that was much higher than AP-ER; very few had AP-ER higher than ER. Compounds with a large difference between AP-ER and ER were typically basic compounds with low-to-medium passive permeability and high lipophilicity and/or amphiphilicity, leading to strong membrane binding. Outcomes in the human model were similar to those in mice, suggesting AP-ER/ER ratios may be conserved for at least two species. AP-ER predicted measured cerebrospinal fluid (CSF) concentration better than ER for the five compounds tested in our in vivo rat infusion studies. We report superior estimations of the CSF concentrations of the compounds when based on less resource-intensive AP-ER versus classic ER. Better understanding of the properties leading to high P-gp-mediated efflux in vivo could support more efficient brain-penetrant compound screening and optimization. SIGNIFICANCE STATEMENT: To address inconsistencies associated with the historical, bidirectional efflux ratio (ER) calculation of P-glycoprotein-mediated transport, we propose to use the novel, more physiologically relevant, unidirectional apical efflux ratio (AP-ER) model. In vitro experiments suggested that compounds with strong membrane binding showed the largest difference between AP-ER and ER, and in vivo infusion studies showed that AP-ER predicted cerebrospinal fluid concentrations of compounds better than ER; outcomes in the human model were similar to those in mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.120.000158DOI Listing
March 2021

Entrectinib, a TRK/ROS1 inhibitor with anti-CNS tumor activity: differentiation from other inhibitors in its class due to weak interaction with P-glycoprotein.

Neuro Oncol 2020 06;22(6):819-829

Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Translational and Clinical Research Center, Inc., NJ, USA.

Background: Studies evaluating the CNS penetration of a novel tyrosine kinase inhibitor, entrectinib, proved challenging, particularly due to discrepancies across earlier experiments regarding P-glycoprotein (P-gp) interaction and brain distribution. To address this question, we used a novel "apical efflux ratio" (AP-ER) model to assess P-gp interaction with entrectinib, crizotinib, and larotrectinib, and compared their brain-penetration properties.

Methods: AP-ER was designed to calculate P-gp interaction with the 3 drugs in vitro using P-gp-overexpressing cells. Brain penetration was studied in rat plasma, brain, and cerebrospinal fluid (CSF) samples after intravenous drug infusion. Unbound brain concentrations were estimated through kinetic lipid membrane binding assays and ex vivo experiments, while the antitumor activity of entrectinib was evaluated in a clinically relevant setting using an intracranial tumor mouse model.

Results: Entrectinib showed lower AP-ER (1.1-1.15) than crizotinib and larotrectinib (≥2.8). Despite not reaching steady-state brain exposures in rats after 6 hours, entrectinib presented a more favorable CSF-to-unbound concentration in plasma (CSF/Cu,p) ratio (>0.2) than crizotinib and larotrectinib at steady state (both: CSF/Cu,p ~0.03). In vivo experiments validated the AP-ER approach. Entrectinib treatment resulted in strong tumor inhibition and full survival benefit in the intracranial tumor model at clinically relevant systemic exposures.

Conclusions: Entrectinib, unlike crizotinib and larotrectinib, is a weak P-gp substrate that can sustain CNS exposure based on our novel in vitro and in vivo experiments. This is consistent with the observed preclinical and clinical efficacy of entrectinib in neurotrophic tropomyosin receptor kinase (NTRK) and ROS1 fusion-positive CNS tumors and secondary CNS metastases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/neuonc/noaa052DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283026PMC
June 2020

A minimally-invasive serial cerebrospinal fluid sampling model in conscious Göttingen minipigs.

J Biol Methods 2019 11;6(1):e107. Epub 2019 Jan 11.

Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland.

Drug concentrations in cerebrospinal fluid (CSF) are typically used as a as a surrogate measure of their availability in the CNS, and CSF penetration in animal studies are used for assessment of CNS drug delivery in early preclinical drug development. The minipig is a valid alternative to dogs and non-human primates as non-rodent species in preclinical research, but this species presents anatomical peculiarities that make the serial collection of CSF technically challenging. A minimally-invasive serial cerebrospinal fluid collection model catheterization of the subarachnoid space in conscious minipigs was developed allowing assessment of longitudinal drug pharmacokinetics in the central nervous system in preclinical research. Shortly, the subarachnoid space was accessed in the anesthetized minipig by puncture with a Tuohy needle; when CSF was flowing through the needle a catheter was advanced and thereafter tunneled and fixed on the back. The PK of peptide A administered subcutaneously was performed and CSF could be sampled in the conscious animals for up to 48 h. When compared to the plasma kinetic data, there was a clear difference in the elimination phase of Pept. A from CSF, with an apparent longer average terminal half-life in CSF. The 3Rs are addressed by reducing the number of animals needed for a pharmacokinetic profile in central nervous system and by improving the validity of the model avoiding biases due to anesthesia, blood contamination, and inter-individual variability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.14440/jbm.2019.265DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706129PMC
January 2019

The herpes simplex virus 1 Us3 kinase is involved in assembly of membranes needed for viral envelopment and in distribution of glycoprotein K.

F1000Res 2019 23;8:727. Epub 2019 May 23.

Institute of Virology, University of Zürich, Zürich, CH-8057, Switzerland.

Capsids of herpes simplex virus 1 (HSV-1) are assembled in cell nuclei, released into the perinuclear space by budding at the inner nuclear membrane acquiring tegument and envelope. Alternatively, capsids gain access to the cytoplasm via dilated nuclear pores. They are enveloped by Golgi membranes. Us3 is a non-essential viral kinase that is involved in nucleus-to-cytoplasm translocation, preventing apoptosis and regulation of phospholipid-biosynthesis. Us3-deletion mutants HSV-1∆Us3) accumulate in the perinuclear space. Nuclear and Golgi membranes proliferate, and homogeneous, proteinaceous structures of unknown identity are deposited in nuclei and cytoplasm. Glycoprotein K (gK), a highly hydrophobic viral protein, is essential for production of infectious progeny virus but, according to the literature, exclusively vital for envelopment of capsids by Golgi membranes. In the absence of Us3, virions remain stuck in the perinuclear space but mature to infectivity without reaching Golgi membranes, suggesting further function of gK than assumed. We constructed a HSV-1∆Us3 mutant designated CK177∆Us3gK-HA, in which gK was hemagglutinin (HA) epitope-tagged in order to localize gK by immunolabeling using antibodies against HA for light and electron microscopy. CK177∆Us3gK-HA-infected Vero cells showed similar alterations as those reported for other HSV-1∆Us3, including accumulation of virions in the perinuclear space, overproduction of nuclear and Golgi membranes containing electron dense material with staining property of proteins. Immunolabeling using antibodies against HA revealed that gK is overproduced and localized at nuclear membranes, perinuclear virions stuck in the perinuclear space, Golgi membranes and on protein deposits in cytoplasm and nuclei. Us3 is involved in proper assembly of membranes needed for envelopment and incorporation of gK. Without Us3, virions derived by budding at nuclear membranes remain stuck in the perinuclear space but incorporate gK into their envelope to gain infectivity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.12688/f1000research.19194.1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681629PMC
June 2020

Risdiplam distributes and increases SMN protein in both the central nervous system and peripheral organs.

Pharmacol Res Perspect 2018 12 29;6(6):e00447. Epub 2018 Nov 29.

Roche Pharma Research and Early Development Roche Innovation Center Basel Switzerland.

Spinal muscular atrophy (SMA) is a rare, inherited neuromuscular disease caused by deletion and/or mutation of the Survival of Motor Neuron 1 ( gene. A second gene, , produces low levels of functional SMN protein that are insufficient to fully compensate for the lack of . Risdiplam (RG7916; RO7034067) is an orally administered, small-molecule pre-mRNA splicing modifier that distributes into the central nervous system (CNS) and peripheral tissues. To further explore risdiplam distribution, we assessed in vitro characteristics and in vivo drug levels and effect of risdiplam on SMN protein expression in different tissues in animal models. Total drug levels were similar in plasma, muscle, and brain of mice (n = 90), rats (n = 148), and monkeys (n = 24). As expected mechanistically based on its high passive permeability and not being a human multidrug resistance protein 1 substrate, risdiplam CSF levels reflected free compound concentration in plasma in monkeys. Tissue distribution remained unchanged when monkeys received risdiplam once daily for 39 weeks. A parallel dose-dependent increase in SMN protein levels was seen in CNS and peripheral tissues in two SMA mouse models dosed with risdiplam. These in vitro and in vivo preclinical data strongly suggest that functional SMN protein increases seen in patients' blood following risdiplam treatment should reflect similar increases in functional SMN protein in the CNS, muscle, and other peripheral tissues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/prp2.447DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6262736PMC
December 2018

Nanotracing and cavity-ring down spectroscopy: A new ultrasensitive approach in large molecule drug disposition studies.

PLoS One 2018 17;13(10):e0205435. Epub 2018 Oct 17.

Pharmaceutical Sciences and Therapeutic Modalities, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.

New therapeutic biological entities such as bispecific antibodies targeting tissue or specific cell populations form an increasingly important part of the drug development portfolio. However, these biopharmaceutical agents bear the risk of extensive target-mediated drug disposition or atypical pharmacokinetic properties as compared to canonical antibodies. Pharmacokinetics and bio-distribution studies become therefore more and more important during lead optimization. Biologics present, however, greater analytical challenges than small molecule drugs due to the mass and selectivity limitation of mass spectrometry and ligand-binding assay, respectively. Radiocarbon (14C) and its detection methods, such as the emerging 14C cavity ring down spectroscopy (CRDS), thus can play an important role in the large molecule quantitation where a 14C-tag is covalently bound through a stable linker. CRDS has the advantage of a simplified sample preparation and introduction system as compared to accelerator mass spectrometry (AMS) and can be accommodated within an ordinary research laboratory. In this study, we report on the labeling of an anti-IL17 IgG1 model antibody with 14C propionate tag and its detection by CRDS using it as nanotracer (2.1 nCi or 77.7 Bq blended with the therapeutic dose) in a pharmacokinetics study in a preclinical species. We compare these data to data generated by AMS in parallel processed samples. The derived concentration time profiles for anti-IL17 by CRDS were in concordance with the ones derived by AMS and γ-counting of an 125I-labeled anti-IL17 radiotracer and were well described by a 2-compartment population pharmacokinetic model. In addition, antibody tissue distribution coefficients for anti-IL17 were determined by CRDS, which proved to be a direct and sensitive measurement of the extravascular tissue concentration of the antibody when tissue perfusion was applied. Thus, this proof-of-concept study demonstrates that trace 14C-radiolabels and CRDS are an ultrasensitive approach in (pre)clinical pharmacokinetics and bio-distribution studies of new therapeutic entities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205435PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192596PMC
March 2019

Preputial diverticulum dilation in a Goettingen minipig.

Lab Anim 2018 Feb 9;52(1):93-97. Epub 2017 Oct 9.

Pharma Research and Early Development (pRED), Pharmaceutical Sciences (PS), Roche Innovation Center Basel, Switzerland.

Preputial dilation is an infrequently reported condition in pigs. The pathophysiology and etiology is unclear. Causes for diverticulum dilation are proposed to be chronic preputial diverticulitis with subsequent fibrosis of the preputial cavity, phimosis of the preputial orifice or the preputial diverticulum, but the large majority of cases are reportedly idiopathic in nature. Surgical interventions include ablative procedures, but many cases are not treated because of an assumed lack of clinical relevance in pigs not used for breeding. We report a case of progressive preputial dilation that recurred after surgical intervention. Histopathological examination revealed no primary inflammatory condition, contrary to literature suggesting a role for inflammatory mediators in pathogenesis. Phimosis of the preputial orifice was noted post mortem and might be a contributing factor. These findings partially contradict the current assumptions in regards to pathophysiology and treatment choices in the literature and warrant further investigation into alternative therapeutic interventions for this condition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/0023677217735550DOI Listing
February 2018

Neonatal Immune Tolerance Induction to Allow Long-Term Studies With an Immunogenic Therapeutic Monoclonal Antibody in Mice.

AAPS J 2016 Mar 24;18(2):354-61. Epub 2015 Nov 24.

Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland.

The purpose of this study is to test the feasibility of neonatal immune tolerance induction in mice to enable long-term pharmacokinetic studies with immunogenic therapeutic monoclonal antibodies (mAb). Neonatal immune tolerance was induced by transfer of a mAb to neonatal mice via colostrum from nursing mother mice treated with two subcutaneous doses of a tolerogen starting within the first 24 h after delivery. Adalimumab and efalizumab were administered as tolerogens at various dose levels. Tolerance induction was evaluated in the offspring after reaching adulthood at 8 weeks of age. After a single intravenous injection of the same mAb as used for tolerance induction, the pharmacokinetics of the mAb and formation of anti-drug antibodies (ADA) in plasma were assessed using ELISA. Tolerance induction to adalimumab was achieved in a maternal dose-dependent manner. Adalimumab immune-tolerant offspring showed a slower adalimumab clearance (4.24 ± 0.32 mL/day/kg) as compared to the control group (12.09 ± 3.81 mL/day/kg). In the control group, accelerated clearance started 7 days after adalimumab dosing, whereas immune-tolerant offspring showed a log-linear terminal concentration-time course. In the offspring, the absence of predose ADA levels was indicative of successful tolerance induction. The second test compound efalizumab was not immunogenic in mice under our experimental conditions. Overall, the present study demonstrated the suitability of neonatal immune tolerance induction for a 4-week single dose study in adult mice with a human therapeutic mAb that is otherwise immunogenic in laboratory animals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12248-015-9850-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779100PMC
March 2016

Glycoprotein D of bovine herpesvirus 5 (BoHV-5) confers an extended host range to BoHV-1 but does not contribute to invasion of the brain.

J Virol 2010 Jun 10;84(11):5583-93. Epub 2010 Mar 10.

Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland.

Bovine herpesvirus 1 (BoHV-1) and BoHV-5 are closely related pathogens of cattle, but only BoHV-5 is considered a neuropathogen. We engineered intertypic gD exchange mutants with BoHV-1 and BoHV-5 backbones in order to address their in vitro and in vivo host ranges, with particular interest in invasion of the brain. The new viruses replicated in cell culture with similar dynamics and to titers comparable to those of their wild-type parents. However, gD of BoHV-5 (gD5) was able to interact with a surprisingly broad range of nectins. In vivo, gD5 provided a virulent phenotype to BoHV-1 in AR129 mice, featuring a high incidence of neurological symptoms and early onset of disease. However, only virus with the BoHV-5 backbone, independent of the gD type, was detected in the brain by immunohistology. Thus, gD of BoHV-5 confers an extended cellular host range to BoHV-1 and may be considered a virulence factor but does not contribute to the invasion of the brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.00228-10DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2876591PMC
June 2010

Exploring the nuclear envelope of herpes simplex virus 1-infected cells by high-resolution microscopy.

J Virol 2009 Jan 15;83(1):408-19. Epub 2008 Oct 15.

Electron Microscopy, Institute of Virology, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland.

Herpesviruses are composed of capsid, tegument, and envelope. Capsids assemble in the nucleus and exit the nucleus by budding at the inner nuclear membrane, acquiring tegument and the envelope. This study focuses on the changes of the nuclear envelope during herpes simplex virus 1 (HSV-1) infection in HeLa and Vero cells by employing preparation techniques at ambient and low temperatures for high-resolution scanning and transmission electron microscopy and confocal laser scanning microscopy. Cryo-field emission scanning electron microscopy of freeze-fractured cells showed for the first time budding of capsids at the nuclear envelope at the third dimension with high activity at 10 h and low activity at 15 h of incubation. The mean number of pores was significantly lower, and the mean interpore distance and the mean interpore area were significantly larger than those for mock-infected cells 15 h after inoculation. Forty-five percent of nuclear pores in HSV-1-infected cells were dilated to more than 140 nm. Nuclear material containing capsids protrude through them into the cytoplasm. Examination of in situ preparations after dry fracturing revealed significant enlargements of the nuclear pore diameter and of the nuclear pore central channel in HSV-1-infected cells compared to mock-infected cells. The demonstration of nucleoporins by confocal microscopy also revealed fewer pores but focal enhancement of fluorescence signals in HSV-1-infected cells, whereas Western blots showed no loss of nucleoporins from cells. The data suggest that infection with HSV-1 alters the number, size, and architecture of nuclear pores without a loss of nucleoporins from altered nuclear pore complexes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.01568-08DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612326PMC
January 2009

Peripheral administration of a melanocortin 4-receptor inverse agonist prevents loss of lean body mass in tumor-bearing mice.

J Pharmacol Exp Ther 2006 May 25;317(2):771-7. Epub 2006 Jan 25.

Applied Pharmacology, Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.

Cachexia affects many different chronically ill patient populations, including those with cancer. It results in loss of body weight, particularly of lean body mass (LBM), and is estimated to be responsible for over 20% of all cancer-related deaths. Currently, available drugs are ineffective, and new therapies are urgently needed. Melanocortin 4-receptor (MC4-R) blockade has been shown recently to be effective in preventing cancer cachexia in rodent models. In the present study, we have tested a MC4-R blocker, ML00253764 [2-{2-[2-(5-bromo-2-methoxyphenyl)-ethyl]-3-fluorophenyl}-4,5-dihydro-1H-imidazolium hydrochloride] (Vos et al., 2004), in vitro and in vivo. In membranes of human embryonic kidney 293 cells expressing human MC4-R, ML00253764 displaced [Nle(4), d-Phe(7)]-alpha-melanocyte-stimulating hormone binding with an IC(50) of 0.32 microM. At concentrations above 1 microM, ML00253764 decreased cAMP accumulation (maximal reduction of -20%) indicative of inverse agonist activity. ML00253764 was administered twice daily (15 mg/kg s.c.) for 13 days to C57BL6 mice bearing s.c. Lewis lung carcinoma tumors. Food intake and body weight were measured, and body composition was assessed using magnetic resonance relaxometry. ML00253764 stimulated light-phase food intake relative to vehicle-treated controls (p < 0.05), although no effect was observed on 24-h food intake. During the 21 days of the experiment, the LBM of tumor vehicle-treated mice decreased (p < 0.05). In contrast, the tumor-bearing mice treated with ML00253764 maintained their LBM. These data support the view that MC4-R blockade may be a suitable approach for the treatment of cancer cachexia and that MC4-R inverse agonists may have potential as drug candidates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.105.097725DOI Listing
May 2006

Central administration of small interfering RNAs in rats: a comparison with antisense oligonucleotides.

Eur J Pharmacol 2005 Oct 6;522(1-3):30-7. Epub 2005 Oct 6.

Applied Pharmacology, Biozentrum, University of Basel, Switzerland.

To date there are only few reports of the use of small interfering RNA (siRNA) in whole animals and most of these are restricted to systemic application of siRNAs targeting the liver. In our present studies we have investigated whether siRNAs can be used against a central target after intracerebroventricular (i.c.v.) application and compared their effects with those of antisense oligonucleotides. For this purpose we designed different siRNA and antisense oligonucleotide molecules against the rat hypothalamic melanocortin MC(4) receptor and selected the siRNA and antisense oligonucleotide with the highest efficacy in vitro. We observed that siRNA, encompassing the same gene sequence as antisense oligonucleotides, induced a stronger inhibition of melanocortin MC(4) receptor expression than antisense oligonucleotides. When fluorescence-labeled siRNA were applied i.c.v. in rats no label was detected in brain tissue in spite of the use of cell detergents to improve the delivery. In contrast to these findings the i.c.v. administered fluorescence-labeled antisense oligonucleotides reached the brain structures expressing melanocortin MC(4) receptor and were taken up by the cells in these areas. In summary it seems as if 'naked' antisense oligonucleotides have an advantage over 'naked' siRNA for experiments in vivo. The development of optimized vector systems seems to be a prerequisite before siRNA can be regarded as a suitable experimental tool for in vivo studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2005.08.021DOI Listing
October 2005

Impairment of nuclear pores in bovine herpesvirus 1-infected MDBK cells.

J Virol 2005 Jan;79(2):1071-83

Electron Microscopy Institute of Veterinary Anatomy, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland.

Herpesvirus capsids originating in the nucleus overcome the nucleocytoplasmic barrier by budding at the inner nuclear membrane. The fate of the resulting virions is still under debate. The fact that capsids approach Golgi membranes from the cytoplasmic side led to the theory of fusion between the viral envelope and the outer nuclear membrane, resulting in the release of capsids into the cytoplasm. We recently discovered a continuum from the perinuclear space to the Golgi complex implying (i) intracisternal viral transportation from the perinuclear space directly into Golgi cisternae and (ii) the existence of an alternative pathway of capsids from the nucleus to the cytoplasm. Here, we analyzed the nuclear surface by high-resolution microscopy. Confocal microscopy of MDBK cells infected with recombinant bovine herpesvirus 1 expressing green fluorescent protein fused to VP26 (a minor capsid protein) revealed distortions of the nuclear surface in the course of viral multiplication. High-resolution scanning and transmission electron microscopy proved the distortions to be related to enlargement of nuclear pores through which nuclear content including capsids protrudes into the cytoplasm, suggesting that capsids use impaired nuclear pores as gateways to gain access to the cytoplasmic matrix. Close examination of Golgi membranes, rough endoplasmic reticulum, and outer nuclear membrane yielded capsid-membrane interaction of high identity to the budding process at the inner nuclear membrane. These observations signify the ability of capsids to induce budding at any cell membrane, provided the fusion machinery is present and/or budding is not suppressed by viral proteins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.79.2.1071-1083.2005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC538577PMC
January 2005

Modulation of translation-initiation in CHO-K1 cells by rapamycin-induced heterodimerization of engineered eIF4G fusion proteins.

Biotechnol Bioeng 2003 Jul;83(2):210-25

Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland.

Translation-initiation is a predominant checkpoint in mammalian cells which controls protein synthesis and fine-tunes the flow of information from gene to protein. In eukaryotes, translation-initiation is typically initiated at a 7-methyl-guanylic acid cap posttranscriptionally linked to the 5' end of mRNAs. Alternative cap-independent translation-initiation involves 5' untranslated regions (UTR) known as internal ribosome entry sites, which adopt a particular secondary structure. Translation-initiating ribosome assembly at cap or IRES elements is mediated by a multiprotein complex of which the initiation factor 4F (eIF4F) consisting of eIF4A (helicase), eIF4E (cap-binding protein), and eIF4G is a major constituent. eIF4G is a key target of picornaviral protease 2A, which cleaves this initiation factor into eIF4G(Delta) and (Delta)eIF4G to redirect the cellular translation machinery exclusively to its own IRES-containing transcripts. We have designed a novel translation control system (TCS) for conditional as well as adjustable translation of cap- and IRES-dependent transgene mRNAs in mammalian cells. eIF4G(Delta) and (Delta)eIF4G were fused C- and N-terminally to the FK506-binding protein (FKBP) and the FKBP-rapamycin-binding domain (FRB) of the human FKBP-rapamycin-associated protein (FRAP), respectively. Rapamycin-induced heterodimerization of eIF4G(Delta)-FKBP and FRB-(Delta)eIF4G fusion proteins reconstituted a functional chimeric elongation factor 4G in a dose-dependent manner. Rigorous quantitative expression analysis of cap- and IRES-dependent SEAP- (human placental secreted alkaline phosphatase) and luc- (Photinus pyralis luciferase) encoding reporter constructs confirmed adjustable translation control and revealed increased production of desired proteins in response to dimerization-induced heterologous eIF4G in Chinese hamster ovary (CHO-K1) cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.10662DOI Listing
July 2003

Mice deficient for the HNK-1 sulfotransferase show alterations in synaptic efficacy and spatial learning and memory.

Mol Cell Neurosci 2002 Aug;20(4):712-29

Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, D-20246 Hamburg, Germany.

The HNK-1 carbohydrate structure, a sulfated glucuronyl-lactosaminyl residue carried by many neural recognition molecules, is involved in cell interactions during ontogenetic development and in synaptic plasticity in the adult. To characterize the functional role of the HNK-1 carbohydrate in vivo, we have generated mice deficient for the HNK-1 sulfotransferase (ST). The ST-/- allele is inherited with Mendelian frequencies, and the ST-/- mice are viable and fertile. The anatomy of all major brain areas appeared histologically normal. However, basal synaptic transmission in pyramidal cells in the CA1 region of the hippocampus was increased and long-term potentiation evoked by theta-burst stimulation was reduced in ST mutants. In the water maze, ST-/- mice showed an impaired long-term memory and a poorer spatial learning when a short inter-trial interval was used. These observations indicate an essential role for the sulfate group of the HNK-1 carbohydrate in synaptic plasticity of the hippocampus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1006/mcne.2002.1142DOI Listing
August 2002