Publications by authors named "Claudia Langenberg"

303 Publications

Identifying adults at high-risk for change in weight and BMI in England: a longitudinal, large-scale, population-based cohort study using electronic health records.

Lancet Diabetes Endocrinol 2021 Sep 2. Epub 2021 Sep 2.

Institute of Health Informatics, University College London, London, UK; Health Data Research UK, University College London, London, UK; National Institute of Health Research, University College London Hospitals Biomedical Research Centre, London, UK.

Background: Targeted obesity prevention policies would benefit from the identification of population groups with the highest risk of weight gain. The relative importance of adult age, sex, ethnicity, geographical region, and degree of social deprivation on weight gain is not known. We aimed to identify high-risk groups for changes in weight and BMI using electronic health records (EHR).

Methods: In this longitudinal, population-based cohort study we used linked EHR data from 400 primary care practices (via the Clinical Practice Research Datalink) in England, accessed via the CALIBER programme. Eligible participants were aged 18-74 years, were registered at a general practice clinic, and had BMI and weight measurements recorded between Jan 1, 1998, and June 30, 2016, during the period when they had eligible linked data with at least 1 year of follow-up time. We calculated longitudinal changes in BMI over 1, 5, and 10 years, and investigated the absolute risk and odds ratios (ORs) of transitioning between BMI categories (underweight, normal weight, overweight, obesity class 1 and 2, and severe obesity [class 3]), as defined by WHO. The associations of demographic factors with BMI transitions were estimated by use of logistic regression analysis, adjusting for baseline BMI, family history of cardiovascular disease, use of diuretics, and prevalent chronic conditions.

Findings: We included 2 092 260 eligible individuals with more than 9 million BMI measurements in our study. Young adult age was the strongest risk factor for weight gain at 1, 5, and 10 years of follow-up. Compared with the oldest age group (65-74 years), adults in the youngest age group (18-24 years) had the highest OR (4·22 [95% CI 3·86-4·62]) and greatest absolute risk (37% vs 24%) of transitioning from normal weight to overweight or obesity at 10 years. Likewise, adults in the youngest age group with overweight or obesity at baseline were also at highest risk to transition to a higher BMI category; OR 4·60 (4·06-5·22) and absolute risk (42% vs 18%) of transitioning from overweight to class 1 and 2 obesity, and OR 5·87 (5·23-6·59) and absolute risk (22% vs 5%) of transitioning from class 1 and 2 obesity to class 3 obesity. Other demographic factors were consistently less strongly associated with these transitions; for example, the OR of transitioning from normal weight to overweight or obesity in people living in the most socially deprived versus least deprived areas was 1·23 (1·18-1·27), for men versus women was 1·12 (1·08-1·16), and for Black individuals versus White individuals was 1·13 (1·04-1·24). We provide an open access online risk calculator, and present high-resolution obesity risk charts over a 1-year, 5-year, and 10-year follow-up period.

Interpretation: A radical shift in policy is required to focus on individuals at the highest risk of weight gain (ie, young adults aged 18-24 years) for individual-level and population-level prevention of obesity and its long-term consequences for health and health care.

Funding: The British Hearth Foundation, Health Data Research UK, the UK Medical Research Council, and the National Institute for Health Research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S2213-8587(21)00207-2DOI Listing
September 2021

The genomics of heart failure: design and rationale of the HERMES consortium.

ESC Heart Fail 2021 Sep 3. Epub 2021 Sep 3.

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

Aims: The HERMES (HEart failure Molecular Epidemiology for Therapeutic targetS) consortium aims to identify the genomic and molecular basis of heart failure.

Methods And Results: The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34-90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of ≥1.10 for common variants (allele frequency ≥ 0.05) and ≥1.20 for low-frequency variants (allele frequency 0.01-0.05) at P < 5 × 10 under an additive genetic model.

Conclusions: HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ehf2.13517DOI Listing
September 2021

Utility of Genetically Predicted Lp(a) (Lipoprotein [a]) and ApoB Levels for Cardiovascular Risk Assessment.

Circ Genom Precis Med 2021 Aug 31:CIRCGEN121003312. Epub 2021 Aug 31.

Department of Epidemiology, Biostatistics and Occupational Health (H.W., J.B.R.).

Background: Current lipid guidelines suggest measurement of Lp(a) (lipoprotein[a]) and ApoB (apolipoprotein B) for atherosclerotic cardiovascular disease risk assessment. Polygenic risk scores (PRSs) for Lp(a) and ApoB may identify individuals unlikely to have elevated Lp(a) or ApoB and thus reduce such suggested testing.

Methods: PRSs were developed using LASSO regression among 273 222 and 356 958 UK Biobank participants of white British ancestry for Lp(a) and ApoB, respectively, and validated in separate sets of 60 771 UK Biobank and 15 050 European Prospective Investigation into Cancer and Nutrition-Norfolk participants. We then assessed the proportion of participants who, based on these PRSs, were unlikely to benefit from Lp(a) or ApoB measurements, according to current lipid guidelines.

Results: In the UK Biobank and European Prospective Investigation into Cancer and Nutrition-Norfolk cohorts, the area under the receiver operating curve for the PRS-predicted Lp(a) and ApoB to identify individuals with elevated Lp(a) and ApoB was at least 0.91 (95% CI, 0.90-0.92) and 0.74 (95% CI, 0.73-0.75), respectively. The Lp(a) PRS and measured Lp(a) showed comparable association with atherosclerotic cardiovascular disease incidence, whereas the ApoB PRS was in general less predictive of atherosclerotic cardiovascular disease risk than measured ApoB. In the context of the ESC/EAS lipid guidelines, at a 95% sensitivity to identify individuals with elevated Lp(a) and ApoB levels, at least 54% of Lp(a) and 24% of ApoB testing could be reduced by prescreening with a PRS while maintaining a low false-negative rate.

Conclusions: A substantial proportion of suggested testing for elevated Lp(a) and a modest proportion of testing for elevated ApoB could potentially be reduced by prescreening individuals with PRSs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.121.003312DOI Listing
August 2021

Estimating the Population Benefits of Blood Pressure Lowering: A Wide-Angled Mendelian Randomization Study in UK Biobank.

J Am Heart Assoc 2021 Sep 28;10(17):e021098. Epub 2021 Aug 28.

Department of Public Health and Primary Care University of Cambridge United Kingdom.

Background The causal relevance of elevated blood pressure for several cardiovascular diseases (CVDs) is uncertain, as is the population impact of blood pressure lowering. This study systematically assesses evidence of causality for various CVDs in a 2-sample Mendelian randomization framework, and estimates the potential reduction in the prevalence of these diseases attributable to long-term population shifts in the distribution of systolic blood pressure (SBP). Methods and Results We investigated associations of genetically predicted SBP as predicted by 256 genetic variants with 21 CVDs in UK Biobank, a population-based cohort of UK residents. The sample consisted of 376 703 participants of European ancestry, aged 40 to 69 years at recruitment. Genetically predicted SBP was positively associated with 14 of the outcomes (<0.002), including dilated cardiomyopathy, endocarditis, peripheral vascular disease, and rheumatic heart disease. Using genetic variation to estimate the long-term impact of blood pressure lowering on disease in a middle-aged to early late-aged UK-based population, population reductions in SBP were predicted to result in an overall 16.9% (95% CI, 12.2%-21.3%) decrease in morbidity for a 5-mm Hg decrease from a population mean of 137.7 mm Hg, 30.8% (95% CI, 22.8%-38.0%) decrease for a 10-mm Hg decrease, and 56.2% (95% CI, 43.7%-65.9%) decrease for a 22.7-mm Hg decrease in SBP (22.7 mm Hg represents a shift from the current mean SBP to 115 mm Hg). Conclusions Risk of many CVDs is influenced by long-term differences in SBP. The burden of a broad range of CVDs could be substantially reduced by long-term population-wide reductions in the distribution of blood pressure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/JAHA.121.021098DOI Listing
September 2021

Mitochondrial DNA variants modulate N-formylmethionine, proteostasis and risk of late-onset human diseases.

Nat Med 2021 Sep 23;27(9):1564-1575. Epub 2021 Aug 23.

Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK.

Mitochondrial DNA (mtDNA) variants influence the risk of late-onset human diseases, but the reasons for this are poorly understood. Undertaking a hypothesis-free analysis of 5,689 blood-derived biomarkers with mtDNA variants in 16,220 healthy donors, here we show that variants defining mtDNA haplogroups Uk and H4 modulate the level of circulating N-formylmethionine (fMet), which initiates mitochondrial protein translation. In human cytoplasmic hybrid (cybrid) lines, fMet modulated both mitochondrial and cytosolic proteins on multiple levels, through transcription, post-translational modification and proteolysis by an N-degron pathway, abolishing known differences between mtDNA haplogroups. In a further 11,966 individuals, fMet levels contributed to all-cause mortality and the disease risk of several common cardiovascular disorders. Together, these findings indicate that fMet plays a key role in common age-related disease through pleiotropic effects on cell proteostasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-021-01441-3DOI Listing
September 2021

Genetically Predicted Glucose-Dependent Insulinotropic Polypeptide (Gip) Levels and Cardiovascular Disease Risk are Driven by Distinct Causal Variants in the Gipr Region.

Diabetes 2021 Aug 23. Epub 2021 Aug 23.

MRC Epidemiology Unit, University of Cambridge, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.

There is considerable interest in GIPR agonism to enhance the insulinotropic and extra-pancreatic effects of GIP, thereby improving glycaemic and weight control in type 2 diabetes (T2D) and obesity. Recent genetic epidemiological evidence has implicated higher GIPR-mediated GIP levels in raising coronary artery disease (CAD) risk, a potential safety concern for GIPR agonism. We therefore aimed to quantitatively assess whether the association between higher GIPR-mediated fasting GIP levels and CAD risk is mediated via GIPR or is instead the result of linkage disequilibrium (LD) confounding between variants at the locus. Using Bayesian multi-trait colocalisation, we identified a missense variant rs1800437 (G allele; E354) as the putatively causal variant shared between fasting GIP levels, glycaemic traits and adiposity-related traits (posterior probability for colocalisation, PP>0.97; PP explained by the candidate variant; PP=1) that was independent from a cluster of CAD and lipid traits driven by a known missense variant in (rs7412; distance to E354 ∼770Kb; R with E354 = 0.004; PPcoloc>0.99; PP=1). Further, conditioning the association between E354 and CAD on the residual LD with rs7412, we observed slight attenuation in association, but it remained significant (OR per copy of E354 after adjustment 1.03; 95% CI, 1.02, 1.04; P=0.003). Instead, E354's association with CAD was completely attenuated when conditioning on an additional established CAD signal, rs1964272, (R with E354=0.27), an intronic variant in (OR for E354 after adjustment for rs1964272: 1.01; 95% CI, 0.99, 1.03; P=0.06). We demonstrate that associations with GIP, anthropometric and glycaemic traits are driven by distinct genetic signals from those driving CAD and lipid traits in the region, and higher E354-mediated fasting GIP levels are not associated with CAD risk. These findings provide evidence that the inclusion of GIPR agonism in dual GIPR/GLP-1R agonists could potentiate the protective effect of GLP-1 agonists on diabetes without undue CAD risk, an aspect which has yet to be assessed in clinical trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db21-0103DOI Listing
August 2021

Genetic insights into biological mechanisms governing human ovarian ageing.

Nature 2021 Aug 4;596(7872):393-397. Epub 2021 Aug 4.

Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.

Reproductive longevity is essential for fertility and influences healthy ageing in women, but insights into its underlying biological mechanisms and treatments to preserve it are limited. Here we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in about 200,000 women of European ancestry. These common alleles were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations. The identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR-associated genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increases fertility and extends reproductive life in mice. Causal inference analyses using the identified genetic variants indicate that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases the risk of hormone-sensitive cancers. These findings provide insight into the mechanisms that govern ovarian ageing, when they act, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03779-7DOI Listing
August 2021

Weight Change and the Onset of Cardiovascular Diseases: Emulating Trials Using Electronic Health Records.

Epidemiology 2021 Sep;32(5):744-755

From the Institute of Health Informatics, University College London (UCL), London, United Kingdom.

Background: Cross-sectional measures of body mass index (BMI) are associated with cardiovascular disease (CVD) incidence, but less is known about whether weight change affects the risk of CVD.

Methods: We estimated the effect of 2-y weight change interventions on 7-y risk of CVD (CVD death, myocardial infarction, stroke, hospitalization from coronary heart disease, and heart failure) by emulating hypothetical interventions using electronic health records. We identified 138,567 individuals with 45-69 years of age without chronic disease in England from 1998 to 2016. We performed pooled logistic regression, using inverse-probability weighting to adjust for baseline and time-varying confounders. We categorized each individual into a weight loss, maintenance, or gain group.

Results: Among those of normal weight, both weight loss [risk difference (RD) vs. weight maintenance = 1.5% (0.3% to 3.0%)] and gain [RD = 1.3% (0.5% to 2.2%)] were associated with increased risk for CVD compared with weight maintenance. Among overweight individuals, we observed moderately higher risk of CVD in both the weight loss [RD = 0.7% (-0.2% to 1.7%)] and the weight gain group [RD = 0.7% (-0.1% to 1.7%)], compared with maintenance. In the obese, those losing weight showed lower risk of coronary heart disease [RD = -1.4% (-2.4% to -0.6%)] but not of stroke. When we assumed that chronic disease occurred 1-3 years before the recorded date, estimates for weight loss and gain were attenuated among overweight individuals; estimates for loss were lower among obese individuals.

Conclusion: Among individuals with obesity, the weight-loss group had a lower risk of coronary heart disease but not of stroke. Weight gain was associated with increased risk of CVD across BMI groups. See video abstract at, http://links.lww.com/EDE/B838.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/EDE.0000000000001393DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318567PMC
September 2021

GIGYF1 loss of function is associated with clonal mosaicism and adverse metabolic health.

Nat Commun 2021 07 7;12(1):4178. Epub 2021 Jul 7.

MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.

Mosaic loss of chromosome Y (LOY) in leukocytes is the most common form of clonal mosaicism, caused by dysregulation in cell-cycle and DNA damage response pathways. Previous genetic studies have focussed on identifying common variants associated with LOY, which we now extend to rarer, protein-coding variation using exome sequences from 82,277 male UK Biobank participants. We find that loss of function of two genes-CHEK2 and GIGYF1-reach exome-wide significance. Rare alleles in GIGYF1 have not previously been implicated in any complex trait, but here loss-of-function carriers exhibit six-fold higher susceptibility to LOY (OR = 5.99 [3.04-11.81], p = 1.3 × 10). These same alleles are also associated with adverse metabolic health, including higher susceptibility to Type 2 Diabetes (OR = 6.10 [3.51-10.61], p = 1.8 × 10), 4 kg higher fat mass (p = 1.3 × 10), 2.32 nmol/L lower serum IGF1 levels (p = 1.5 × 10) and 4.5 kg lower handgrip strength (p = 4.7 × 10) consistent with proposed GIGYF1 enhancement of insulin and IGF-1 receptor signalling. These associations are mirrored by a common variant nearby associated with the expression of GIGYF1. Our observations highlight a potential direct connection between clonal mosaicism and metabolic health.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-24504-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8263756PMC
July 2021

Variants associated with expression have sex-differential effects on lung function.

Wellcome Open Res 2020 24;5:111. Epub 2021 May 24.

Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, EH4 2XU, UK.

Lung function is highly heritable and differs between the sexes throughout life. However, little is known about sex-differential genetic effects on lung function. We aimed to conduct the first genome-wide genotype-by-sex interaction study on lung function to identify genetic effects that differ between males and females. We tested for interactions between 7,745,864 variants and sex on spirometry-based measures of lung function in UK Biobank (N=303,612), and sought replication in 75,696 independent individuals from the SpiroMeta consortium. Five independent single-nucleotide polymorphisms (SNPs) showed genome-wide significant (P<5x10 ) interactions with sex on lung function, and 21 showed suggestive interactions (P<1x10 ). The strongest signal, from rs7697189 (chr4:145436894) on forced expiratory volume in 1 second (FEV ) (P=3.15x10 ), was replicated (P=0.016) in SpiroMeta. The C allele increased FEV more in males (untransformed FEV β=0.028 [SE 0.0022] litres) than females (β=0.009 [SE 0.0014] litres), and this effect was not accounted for by differential effects on height, smoking or pubertal age. rs7697189 resides upstream of the hedgehog-interacting protein ( ) gene and was previously associated with lung function and lung expression. We found expression was significantly different between the sexes (P=6.90x10 ), but we could not detect sex differential effects of rs7697189 on expression. We identified a novel genotype-by-sex interaction at a putative enhancer region upstream of the gene. Establishing the mechanism by which SNPs have different effects on lung function in males and females will be important for our understanding of lung health and diseases in both sexes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.12688/wellcomeopenres.15846.2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7938335.2PMC
May 2021

Prepubertal Dietary and Plasma Phospholipid Fatty Acids Related to Puberty Timing: Longitudinal Cohort and Mendelian Randomization Analyses.

Nutrients 2021 May 30;13(6). Epub 2021 May 30.

MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge Biomedical Campus Box 285, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK.

Dietary intakes of polyunsaturated, monounsaturated and saturated fatty acids (FAs) have been inconsistently associated with puberty timing. We examined longitudinal associations of prepubertal dietary and plasma phospholipid FAs with several puberty timing traits in boys and girls. In the Avon Longitudinal Study of Parents and Children, prepubertal fat intakes at 3-7.5 years and plasma phospholipid FAs at 7.5 years were measured. Timings of Tanner stage 2 genital or breast development and voice breaking or menarche from repeated reports at 8-17 years, and age at peak height velocity (PHV) from repeated height measurements at 5-20 years were estimated. In linear regression models with adjustment for maternal and infant characteristics, dietary substitution of polyunsaturated FAs for saturated FAs, and higher concentrations of dihomo-γ-linolenic acid (20:3n6) and palmitoleic acid (16:1n7) were associated with earlier timing of puberty traits in girls ( = 3872) but not boys ( = 3654). In Mendelian Randomization models, higher genetically predicted circulating dihomo-γ-linolenic acid was associated with earlier menarche in girls. Based on repeated dietary intake data, objectively measured FAs and genetic causal inference, these findings suggest that dietary and endogenous metabolic pathways that increase plasma dihomo-γ-linolenic acid, an intermediate metabolite of n-6 polyunsaturated FAs, may promote earlier puberty timing in girls.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu13061868DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228200PMC
May 2021

The trans-ancestral genomic architecture of glycemic traits.

Nat Genet 2021 06 31;53(6):840-860. Epub 2021 May 31.

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00852-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610958PMC
June 2021

Mendelian randomisation identifies alternative splicing of the FAS death receptor as a mediator of severe COVID-19.

medRxiv 2021 Apr 7. Epub 2021 Apr 7.

Severe COVID-19 is characterised by immunopathology and epithelial injury. Proteomic studies have identified circulating proteins that are biomarkers of severe COVID-19, but cannot distinguish correlation from causation. To address this, we performed Mendelian randomisation (MR) to identify proteins that mediate severe COVID-19. Using protein quantitative trait loci (pQTL) data from the SCALLOP consortium, involving meta-analysis of up to 26,494 individuals, and COVID-19 genome-wide association data from the Host Genetics Initiative, we performed MR for 157 COVID-19 severity protein biomarkers. We identified significant MR results for five proteins: FAS, TNFRSF10A, CCL2, EPHB4 and LGALS9. Further evaluation of these candidates using sensitivity analyses and colocalization testing provided strong evidence to implicate the apoptosis-associated cytokine receptor FAS as a causal mediator of severe COVID-19. This effect was specific to severe disease. Using RNA-seq data from 4,778 individuals, we demonstrate that the pQTL at the locus results from genetically influenced alternate splicing causing skipping of exon 6. We show that the risk allele for very severe COVID-19 increases the proportion of transcripts lacking exon 6, and thereby increases soluble FAS. Soluble FAS acts as a decoy receptor for FAS-ligand, inhibiting apoptosis induced through membrane-bound FAS. In summary, we demonstrate a novel genetic mechanism that contributes to risk of severe of COVID-19, highlighting a pathway that may be a promising therapeutic target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.04.01.21254789DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8043484PMC
April 2021

Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19.

Nat Med 2021 04 9;27(4):668-676. Epub 2021 Apr 9.

Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA.

Drug repurposing provides a rapid approach to meet the urgent need for therapeutics to address COVID-19. To identify therapeutic targets relevant to COVID-19, we conducted Mendelian randomization analyses, deriving genetic instruments based on transcriptomic and proteomic data for 1,263 actionable proteins that are targeted by approved drugs or in clinical phase of drug development. Using summary statistics from the Host Genetics Initiative and the Million Veteran Program, we studied 7,554 patients hospitalized with COVID-19 and >1 million controls. We found significant Mendelian randomization results for three proteins (ACE2, P = 1.6 × 10; IFNAR2, P = 9.8 × 10 and IL-10RB, P = 2.3 × 10) using cis-expression quantitative trait loci genetic instruments that also had strong evidence for colocalization with COVID-19 hospitalization. To disentangle the shared expression quantitative trait loci signal for IL10RB and IFNAR2, we conducted phenome-wide association scans and pathway enrichment analysis, which suggested that IFNAR2 is more likely to play a role in COVID-19 hospitalization. Our findings prioritize trials of drugs targeting IFNAR2 and ACE2 for early management of COVID-19.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-021-01310-zDOI Listing
April 2021

Reply to Unreliability of genotyping arrays for detecting very rare variants in human genetic studies: Example from a recent study of MC4R.

Cell 2021 Apr;184(7):1652-1653

University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2021.03.014DOI Listing
April 2021

Genetic disruption of serine biosynthesis is a key driver of macular telangiectasia type 2 aetiology and progression.

Genome Med 2021 03 9;13(1):39. Epub 2021 Mar 9.

Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia.

Background: Macular telangiectasia type 2 (MacTel) is a rare, heritable and largely untreatable retinal disorder, often comorbid with diabetes. Genetic risk loci subtend retinal vascular calibre and glycine/serine/threonine metabolism genes. Serine deficiency may contribute to MacTel via neurotoxic deoxysphingolipid production; however, an independent vascular contribution is also suspected. Here, we use statistical genetics to dissect the causal mechanisms underpinning this complex disease.

Methods: We integrated genetic markers for MacTel, vascular and metabolic traits, and applied Mendelian randomisation and conditional and interaction genome-wide association analyses to discover the causal contributors to both disease and spatial retinal imaging sub-phenotypes.

Results: Genetically induced serine deficiency is the primary causal metabolic driver of disease occurrence and progression, with a lesser, but significant, causal contribution of type 2 diabetes genetic risk. Conversely, glycine, threonine and retinal vascular traits are unlikely to be causal for MacTel. Conditional regression analysis identified three novel disease loci independent of endogenous serine biosynthetic capacity. By aggregating spatial retinal phenotypes into endophenotypes, we demonstrate that SNPs constituting independent risk loci act via related endophenotypes.

Conclusions: Follow-up studies after GWAS integrating publicly available data with deep phenotyping are still rare. Here, we describe such analysis, where we integrated retinal imaging data with MacTel and other traits genomics data to identify biochemical mechanisms likely causing this disorder. Our findings will aid in early diagnosis and accurate prognosis of MacTel and improve prospects for effective therapeutic intervention. Our integrative genetics approach also serves as a useful template for post-GWAS analyses in other disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13073-021-00848-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7945323PMC
March 2021

The potential shared role of inflammation in insulin resistance and schizophrenia: A bidirectional two-sample mendelian randomization study.

PLoS Med 2021 03 12;18(3):e1003455. Epub 2021 Mar 12.

Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, England.

Background: Insulin resistance predisposes to cardiometabolic disorders, which are commonly comorbid with schizophrenia and are key contributors to the significant excess mortality in schizophrenia. Mechanisms for the comorbidity remain unclear, but observational studies have implicated inflammation in both schizophrenia and cardiometabolic disorders separately. We aimed to examine whether there is genetic evidence that insulin resistance and 7 related cardiometabolic traits may be causally associated with schizophrenia, and whether evidence supports inflammation as a common mechanism for cardiometabolic disorders and schizophrenia.

Methods And Findings: We used summary data from genome-wide association studies of mostly European adults from large consortia (Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) featuring up to 108,557 participants; Diabetes Genetics Replication And Meta-analysis (DIAGRAM) featuring up to 435,387 participants; Global Lipids Genetics Consortium (GLGC) featuring up to 173,082 participants; Genetic Investigation of Anthropometric Traits (GIANT) featuring up to 339,224 participants; Psychiatric Genomics Consortium (PGC) featuring up to 105,318 participants; and Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium featuring up to 204,402 participants). We conducted two-sample uni- and multivariable mendelian randomization (MR) analysis to test whether (i) 10 cardiometabolic traits (fasting insulin, high-density lipoprotein and triglycerides representing an insulin resistance phenotype, and 7 related cardiometabolic traits: low-density lipoprotein, fasting plasma glucose, glycated haemoglobin, leptin, body mass index, glucose tolerance, and type 2 diabetes) could be causally associated with schizophrenia; and (ii) inflammation could be a shared mechanism for these phenotypes. We conducted a detailed set of sensitivity analyses to test the assumptions for a valid MR analysis. We did not find statistically significant evidence in support of a causal relationship between cardiometabolic traits and schizophrenia, or vice versa. However, we report that a genetically predicted inflammation-related insulin resistance phenotype (raised fasting insulin (raised fasting insulin (Wald ratio OR = 2.95, 95% C.I, 1.38-6.34, Holm-Bonferroni corrected p-value (p) = 0.035) and lower high-density lipoprotein (Wald ratio OR = 0.55, 95% C.I., 0.36-0.84; p = 0.035)) was associated with schizophrenia. Evidence for these associations attenuated to the null in multivariable MR analyses after adjusting for C-reactive protein, an archetypal inflammatory marker: (fasting insulin Wald ratio OR = 1.02, 95% C.I, 0.37-2.78, p = 0.975), high-density lipoprotein (Wald ratio OR = 1.00, 95% C.I., 0.85-1.16; p = 0.849), suggesting that the associations could be fully explained by inflammation. One potential limitation of the study is that the full range of gene products from the genetic variants we used as proxies for the exposures is unknown, and so we are unable to comment on potential biological mechanisms of association other than inflammation, which may also be relevant.

Conclusions: Our findings support a role for inflammation as a common cause for insulin resistance and schizophrenia, which may at least partly explain why the traits commonly co-occur in clinical practice. Inflammation and immune pathways may represent novel therapeutic targets for the prevention or treatment of schizophrenia and comorbid insulin resistance. Future work is needed to understand how inflammation may contribute to the risk of schizophrenia and insulin resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pmed.1003455DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7954314PMC
March 2021

Plasma metabolites to profile pathways in noncommunicable disease multimorbidity.

Nat Med 2021 03 11;27(3):471-479. Epub 2021 Mar 11.

MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.

Multimorbidity, the simultaneous presence of multiple chronic conditions, is an increasing global health problem and research into its determinants is of high priority. We used baseline untargeted plasma metabolomics profiling covering >1,000 metabolites as a comprehensive readout of human physiology to characterize pathways associated with and across 27 incident noncommunicable diseases (NCDs) assessed using electronic health record hospitalization and cancer registry data from over 11,000 participants (219,415 person years). We identified 420 metabolites shared between at least 2 NCDs, representing 65.5% of all 640 significant metabolite-disease associations. We integrated baseline data on over 50 diverse clinical risk factors and characteristics to identify actionable shared pathways represented by those metabolites. Our study highlights liver and kidney function, lipid and glucose metabolism, low-grade inflammation, surrogates of gut microbial diversity and specific health-related behaviors as antecedents of common NCD multimorbidity with potential for early prevention. We integrated results into an open-access webserver ( https://omicscience.org/apps/mwasdisease/ ) to facilitate future research and meta-analyses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-021-01266-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8127079PMC
March 2021

A Neanderthal OAS1 isoform protects individuals of European ancestry against COVID-19 susceptibility and severity.

Nat Med 2021 04 25;27(4):659-667. Epub 2021 Feb 25.

Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.

To identify circulating proteins influencing Coronavirus Disease 2019 (COVID-19) susceptibility and severity, we undertook a two-sample Mendelian randomization (MR) study, rapidly scanning hundreds of circulating proteins while reducing bias due to reverse causation and confounding. In up to 14,134 cases and 1.2 million controls, we found that an s.d. increase in OAS1 levels was associated with reduced COVID-19 death or ventilation (odds ratio (OR) = 0.54, P = 7 × 10), hospitalization (OR = 0.61, P = 8 × 10) and susceptibility (OR = 0.78, P = 8 × 10). Measuring OAS1 levels in 504 individuals, we found that higher plasma OAS1 levels in a non-infectious state were associated with reduced COVID-19 susceptibility and severity. Further analyses suggested that a Neanderthal isoform of OAS1 in individuals of European ancestry affords this protection. Thus, evidence from MR and a case-control study support a protective role for OAS1 in COVID-19 adverse outcomes. Available pharmacological agents that increase OAS1 levels could be prioritized for drug development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-021-01281-1DOI Listing
April 2021

Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women.

Nat Commun 2021 01 28;12(1):654. Epub 2021 Jan 28.

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.

Low muscle strength is an important heritable indicator of poor health linked to morbidity and mortality in older people. In a genome-wide association study meta-analysis of 256,523 Europeans aged 60 years and over from 22 cohorts we identify 15 loci associated with muscle weakness (European Working Group on Sarcopenia in Older People definition: n = 48,596 cases, 18.9% of total), including 12 loci not implicated in previous analyses of continuous measures of grip strength. Loci include genes reportedly involved in autoimmune disease (HLA-DQA1 p = 4 × 10), arthritis (GDF5 p = 4 × 10), cell cycle control and cancer protection, regulation of transcription, and others involved in the development and maintenance of the musculoskeletal system. Using Mendelian randomization we report possible overlapping causal pathways, including diabetes susceptibility, haematological parameters, and the immune system. We conclude that muscle weakness in older adults has distinct mechanisms from continuous strength, including several pathways considered to be hallmarks of ageing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-20918-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844411PMC
January 2021

Diabetes Mellitus, Glycemic Traits, and Cerebrovascular Disease: A Mendelian Randomization Study.

Neurology 2021 03 25;96(13):e1732-e1742. Epub 2021 Jan 25.

From the Institute for Stroke and Dementia Research (M.K.G., R.M., M.D.), Department of Neurology (M.K.G), University Hospital, and Graduate School for Systemic Neurosciences (M.K.G.), Ludwig-Maximilians-University, Munich, Germany; Stroke Research Group, Department of Clinical Neurosciences (E.L.H., H.S.M.), and MRC Epidemiology Unit (C.L., N.J.W.), University of Cambridge, UK; Department of Epidemiology (N.F.), UNC Gillings Global School of Public Health, Chapel Hill, NC; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Centre for Neurodegenerative Diseases (DZNE) (M.D.), Munich, Germany.

Objective: We employed Mendelian randomization to explore the effects of genetic predisposition to type 2 diabetes (T2D), hyperglycemia, insulin resistance, and pancreatic β-cell dysfunction on risk of stroke subtypes and related cerebrovascular phenotypes.

Methods: We selected instruments for genetic predisposition to T2D (74,124 cases, 824,006 controls), HbA1c levels (n = 421,923), fasting glucose levels (n = 133,010), insulin resistance (n = 108,557), and β-cell dysfunction (n = 16,378) based on published genome-wide association studies. Applying 2-sample Mendelian randomization, we examined associations with ischemic stroke (60,341 cases, 454,450 controls), intracerebral hemorrhage (1,545 cases, 1,481 controls), and ischemic stroke subtypes (large artery, cardioembolic, small vessel stroke), as well as with related phenotypes (carotid atherosclerosis, imaging markers of cerebral white matter integrity, and brain atrophy).

Results: Genetic predisposition to T2D and higher HbA1c levels were associated with higher risk of any ischemic stroke, large artery stroke, and small vessel stroke. Similar associations were also noted for carotid atherosclerotic plaque, fractional anisotropy, a white matter disease marker, and markers of brain atrophy. We further found associations of genetic predisposition to insulin resistance with large artery and small vessel stroke, whereas predisposition to β-cell dysfunction was associated with small vessel stroke, intracerebral hemorrhage, lower gray matter volume, and total brain volume.

Conclusions: This study supports causal effects of T2D and hyperglycemia on large artery and small vessel stroke. We show associations of genetically predicted insulin resistance and β-cell dysfunction with large artery and small vessel stroke that might have implications for antidiabetic treatments targeting these mechanisms.

Classification Of Evidence: This study provides Class II evidence that genetic predisposition to T2D and higher HbA1c levels are associated with a higher risk of large artery and small vessel ischemic stroke.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000011555DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055310PMC
March 2021

Appetite disinhibition rather than hunger explains genetic effects on adult BMI trajectory.

Int J Obes (Lond) 2021 04 14;45(4):758-765. Epub 2021 Jan 14.

Institute of Epidemiology and Health Care, University College London, London, UK.

Background/objectives: The mediating role of eating behaviors in genetic susceptibility to weight gain during mid-adult life is not fully understood. This longitudinal study aims to help us understand contributions of genetic susceptibility and appetite to weight gain.

Subjects/methods: We followed the body-mass index (BMI) trajectories of 2464 adults from 45 to 65 years of age by measuring weight and height on four occasions at 5-year intervals. Genetic risk of obesity (gene risk score: GRS) was ascertained, comprising 92 BMI-associated single-nucleotide polymorphisms and split at a median (=high and low risk). At the baseline, the Eating Inventory was used to assess appetite-related traits of 'disinhibition', indicative of opportunistic eating or overeating and 'hunger' which is susceptibility to/ability to cope with the sensation of hunger. Roles of the GRS and two appetite-related scores for BMI trajectories were examined using a mixed model adjusted for the cohort effect and sex.

Results: Disinhibition was associated with higher BMI (β = 2.96; 95% CI: 2.66-3.25 kg/m), and accounted for 34% of the genetically-linked BMI difference at age 45. Hunger was also associated with higher BMI (β = 1.20; 0.82-1.59 kg/m) during mid-life and slightly steeper weight gain, but did not attenuate the effect of disinhibition.

Conclusions: Appetite disinhibition is most likely to be a defining characteristic of genetic susceptibility to obesity. High levels of appetite disinhibition, rather than hunger, may underlie genetic vulnerability to obesogenic environments in two-thirds of the population of European ancestry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41366-020-00735-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8005371PMC
April 2021

Longitudinal Trends in Childhood Insulin Levels and Body Mass Index and Associations With Risks of Psychosis and Depression in Young Adults.

JAMA Psychiatry 2021 Apr;78(4):416-425

Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom.

Importance: Cardiometabolic disorders often occur concomitantly with psychosis and depression, contribute to high mortality rates, and are detectable from the onset of the psychiatric disorders. However, it is unclear whether longitudinal trends in cardiometabolic traits from childhood are associated with risks for adult psychosis and depression.

Objective: To examine whether specific developmental trajectories of fasting insulin (FI) levels and body mass index (BMI) from early childhood were longitudinally associated with psychosis and depression in young adults.

Design, Setting, And Participants: A cohort study from the Avon Longitudinal Study of Parents and Children, a prospective study including a population-representative British cohort of 14 975 individuals, was conducted using data from participants aged 1 to 24 years. Body mass index and FI level data were used for growth mixture modeling to delineate developmental trajectories, and associations with psychosis and depression were assessed. The study was conducted between July 15, 2019, and March 24, 2020.

Exposures: Fasting insulin levels were measured at 9, 15, 18, and 24 years, and BMI was measured at 1, 2, 3, 4, 7, 9, 10, 11, 12, 15, 18, and 24 years. Data on sex, race/ethnicity, paternal social class, childhood emotional and behavioral problems, and cumulative scores of sleep problems, average calorie intake, physical activity, smoking, and alcohol and substance use in childhood and adolescence were examined as potential confounders.

Main Outcomes And Measures: Psychosis risk (definite psychotic experiences, psychotic disorder, at-risk mental state status, and negative symptom score) depression risk (measured using the computerized Clinical Interview Schedule-Revised) were assessed at 24 years.

Results: From data available on 5790 participants (3132 [54.1%] female) for FI levels and data available on 10 463 participants (5336 [51.0%] female) for BMI, 3 distinct trajectories for FI levels and 5 distinct trajectories for BMI were noted, all of which were differentiated by mid-childhood. The persistently high FI level trajectory was associated with a psychosis at-risk mental state (adjusted odds ratio [aOR], 5.01; 95% CI, 1.76-13.19) and psychotic disorder (aOR, 3.22; 95% CI, 1.29-8.02) but not depression (aOR, 1.38; 95% CI, 0.75-2.54). A puberty-onset major increase in BMI was associated with depression (aOR, 4.46; 95% CI, 2.38-9.87) but not psychosis (aOR, 1.98; 95% CI, 0.56-7.79).

Conclusions And Relevance: The cardiometabolic comorbidity of psychosis and depression may have distinct, disorder-specific early-life origins. Disrupted insulin sensitivity could be a shared risk factor for comorbid cardiometabolic disorders and psychosis. A puberty-onset major increase in BMI could be a risk factor or risk indicator for adult depression. These markers may represent targets for prevention and treatment of cardiometabolic disorders in individuals with psychosis and depression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamapsychiatry.2020.4180DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807390PMC
April 2021

A cross-platform approach identifies genetic regulators of human metabolism and health.

Nat Genet 2021 01 7;53(1):54-64. Epub 2021 Jan 7.

Metabolic Research Laboratories, University of Cambridge, Cambridge, UK.

In cross-platform analyses of 174 metabolites, we identify 499 associations (P < 4.9 × 10) characterized by pleiotropy, allelic heterogeneity, large and nonlinear effects and enrichment for nonsynonymous variation. We identify a signal at GLP2R (p.Asp470Asn) shared among higher citrulline levels, body mass index, fasting glucose-dependent insulinotropic peptide and type 2 diabetes, with β-arrestin signaling as the underlying mechanism. Genetically higher serine levels are shown to reduce the likelihood (by 95%) and predict development of macular telangiectasia type 2, a rare degenerative retinal disease. Integration of genomic and small molecule data across platforms enables the discovery of regulators of human metabolism and translation into clinical insights.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-00751-5DOI Listing
January 2021

Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability.

Nat Commun 2021 01 5;12(1):24. Epub 2021 Jan 5.

Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA.

Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-19366-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785747PMC
January 2021

Genetic architecture of host proteins involved in SARS-CoV-2 infection.

Nat Commun 2020 12 16;11(1):6397. Epub 2020 Dec 16.

MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.

Understanding the genetic architecture of host proteins interacting with SARS-CoV-2 or mediating the maladaptive host response to COVID-19 can help to identify new or repurpose existing drugs targeting those proteins. We present a genetic discovery study of 179 such host proteins among 10,708 individuals using an aptamer-based technique. We identify 220 host DNA sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-70.9% of the variance of 97 of these proteins, including 45 with no previously known protein quantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization of pQTLs across the phenome identified protein-drug-disease links and evidence that putative viral interaction partners such as MARK3 affect immune response. Our results accelerate the evaluation and prioritization of new drug development programmes and repurposing of trials to prevent, treat or reduce adverse outcomes. Rapid sharing and detailed interrogation of results is facilitated through an interactive webserver ( https://omicscience.org/apps/covidpgwas/ ).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-19996-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744536PMC
December 2020
-->