Publications by authors named "Clara Y H Choi"

25 Publications

  • Page 1 of 1

A phase I/II trial of 5-fraction stereotactic radiosurgery with 5-mm margins with concurrent temozolomide in newly diagnosed glioblastoma: primary outcomes.

Neuro Oncol 2020 08;22(8):1182-1189

Department of Radiation Oncology, Stanford University, Stanford, California, USA.

Background: We sought to determine the maximum tolerated dose (MTD) of 5-fraction stereotactic radiosurgery (SRS) with 5-mm margins delivered with concurrent temozolomide in newly diagnosed glioblastoma (GBM).

Methods: We enrolled adult patients with newly diagnosed glioblastoma to 5 days of SRS in a 3 + 3 design on 4 escalating dose levels: 25, 30, 35, and 40 Gy. Dose limiting toxicity (DLT) was defined as Common Terminology Criteria for Adverse Events grades 3-5 acute or late CNS toxicity, including adverse radiation effect (ARE), the imaging correlate of radiation necrosis.

Results: From 2010 to 2015, thirty patients were enrolled. The median age was 66 years (range, 51-86 y). The median target volume was 60 cm3 (range, 14.7-137.3 cm3). DLT occurred in 2 patients: one for posttreatment cerebral edema and progressive disease at 3 weeks (grade 4, dose 40 Gy); another patient died 1.5 weeks following SRS from postoperative complications (grade 5, dose 40 Gy). Late grades 1-2 ARE occurred in 8 patients at a median of 7.6 months (range 3.2-12.6 mo). No grades 3-5 ARE occurred. With a median follow-up of 13.8 months (range 1.7-64.4 mo), the median survival times were: progression-free survival, 8.2 months (95% CI: 4.6-10.5); overall survival, 14.8 months (95% CI: 10.9-19.9); O6-methylguanine-DNA methyltransferase hypermethylated, 19.9 months (95% CI: 10.5-33.5) versus 11.3 months (95% CI: 8.9-17.6) for no/unknown hypermethylation (P = 0.03), and 27.2 months (95% CI: 11.2-48.3) if late ARE occurred versus 11.7 months (95% CI: 8.9-17.6) for no ARE (P = 0.08).

Conclusions: The per-protocol MTD of 5-fraction SRS with 5-mm margins with concurrent temozolomide was 40 Gy in 5 fractions. ARE was limited to grades 1-2 and did not statistically impact survival.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/neuonc/noaa019DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594571PMC
August 2020

Cavernous malformations are rare sequelae of stereotactic radiosurgery for brain metastases.

Acta Neurochir (Wien) 2019 01 17;161(1):43-48. Epub 2018 Oct 17.

Department of Radiation Oncology, Stanford University, 875 Blake Wilbur Drive, Stanford, CA, 94305-5847, USA.

The development of cavernous malformations many years following conventionally fractionated brain irradiation is well recognized and commonly reported. However, cavernous malformation induction following stereotactic radiosurgery (SRS) is largely unreported. Herein, we describe two cases of cavernous malformation formation years following SRS for brain metastases. A 20-year-old woman with breast cancer brain metastases received treatment with whole brain radiotherapy (WBRT), then salvage SRS 1.4 years later for progression of a previously treated metastasis. This lesion treated with SRS had hemorrhagic enlargement 3.0 years after SRS. Resection revealed a cavernous malformation. A 25-year-old woman had SRS for a brain metastasis from papillary thyroid carcinoma. Resection of a progressive, hemorrhagic lesion within the SRS field 2 years later revealed both recurrent carcinoma as well as cavernous malformation. As patients with brain metastases live longer following SRS, our cases highlight that the differential diagnosis of an enlarging enhancing lesion within a previous SRS field includes not only cerebral necrosis and tumor progression but also cavernous malformation induction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00701-018-3701-yDOI Listing
January 2019

Vorinostat and Concurrent Stereotactic Radiosurgery for Non-Small Cell Lung Cancer Brain Metastases: A Phase 1 Dose Escalation Trial.

Int J Radiat Oncol Biol Phys 2017 09 6;99(1):16-21. Epub 2017 May 6.

Department of Radiation Oncology, Stanford University, Stanford, California. Electronic address:

Purpose: To determine the maximum tolerated dose (MTD) of vorinostat, a histone deacetylase inhibitor, given concurrently with stereotactic radiosurgery (SRS) to treat non-small cell lung cancer (NSCLC) brain metastases. Secondary objectives were to determine toxicity, local failure, distant intracranial failure, and overall survival rates.

Materials And Methods: In this multicenter study, patients with 1 to 4 NSCLC brain metastases, each ≤2 cm, were enrolled in a phase 1, 3 + 3 dose escalation trial. Vorinostat dose levels were 200, 300, and 400 mg orally once daily for 14 days. Single-fraction SRS was delivered on day 3. A dose-limiting toxicity (DLT) was defined as any Common Terminology Criteria for Adverse Events version 3.0 grade 3 to 5 acute nonhematologic adverse event related to vorinostat or SRS occurring within 30 days.

Results: From 2009 to 2014, 17 patients were enrolled and 12 patients completed study treatment. Because no DLTs were observed, the MTD was established as 400 mg. Acute adverse events were reported by 10 patients (59%). Five patients discontinued vorinostat early and withdrew from the study. The most common reasons for withdrawal were dyspnea (n=2), nausea (n=1), and fatigue (n=2). With a median follow-up of 12 months (range, 1-64 months), Kaplan-Meier overall survival was 13 months. There were no local failures. One patient (8%) at the 400-mg dose level with a 2.0-cm metastasis developed histologically confirmed grade 4 radiation necrosis 2 months after SRS.

Conclusions: The MTD of vorinostat with concurrent SRS was established as 400 mg. Although no DLTs were observed, 5 patients withdrew before completing the treatment course, a result that emphasizes the need for supportive care during vorinostat administration. There were no local failures. A larger, randomized trial may evaluate both the tolerability and potential local control benefit of vorinostat concurrent with SRS for brain metastases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2017.04.041DOI Listing
September 2017

Phase 1/2 Trial of 5-Fraction Stereotactic Radiosurgery With 5-mm Margins With Concurrent and Adjuvant Temozolomide in Newly Diagnosed Supratentorial Glioblastoma: Health-Related Quality of Life Results.

Int J Radiat Oncol Biol Phys 2017 05 7;98(1):123-130. Epub 2017 Feb 7.

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California. Electronic address:

Purpose: We report a longitudinal assessment of health-related quality of life (HRQOL) in patients with glioblastoma (GBM) treated on a prospective dose escalation trial of 5-fraction stereotactic radiosurgery (25-40 Gy in 5 fractions) with concurrent and adjuvant temozolomide.

Methods: HRQOL was assessed using the European Organization for Research and Treatment of Cancer (EORTC) quality of life questionnaire core-30 (QLQ-C30) general, the EORTC quality of life questionnaire-brain cancer specific module (QLQ-BN20), and the M.D. Anderson Symptom Inventory-Brain Tumor (MDASI-BT). Questionnaires were completed at baseline and at every follow-up visit after completion of radiosurgery. Changes from baseline for 9 predefined HRQOL measures (global quality of life, physical functioning, social functioning, emotional functioning, motor dysfunction, communication deficit, fatigue, insomnia, and future uncertainty) were calculated at every time point.

Results: With a median follow-up time of 10.4 months (range, 0.4-52 months), 139 total HRQOL questionnaires were completed by the 30 patients on trial. Compliance with HRQOL assessment was 76% at 12 months. Communication deficit significantly worsened over time, with a decline of 1.7 points per month (P=.008). No significant changes over time were detected in the other 8 scales of our primary analysis, including global quality of life. Although 8 patients (27%) experienced adverse radiation effects (ARE) on this dose escalation trial, it was not associated with a statistically significant decline in any of the primary HRQOL scales. Disease progression was associated with communication deficit, with patients experiencing an average worsening of 13.9 points per month after progression compared with 0.7 points per month before progression (P=.01).

Conclusion: On this 5-fraction dose escalation protocol for newly diagnosed GBM, overall HRQOL remained stable and appears similar to historical controls of 30 fractions of radiation therapy. Tumor recurrence was associated with worsening communication deficit, and ARE did not correlate with a decline in HRQOL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2017.01.242DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6193756PMC
May 2017

Stereotactic radiosurgery for non-vestibular cranial nerve schwanommas.

J Neurooncol 2017 01 17;131(1):177-183. Epub 2016 Oct 17.

Department of Neurosurgery, Stanford University Medical Center, Stanford Cancer Institute, Stanford, CA, USA.

Non-vestibular cranial nerve schwannomas (NVCNS) are rare lesions, representing <10 % of cranial nerve schwannomas. The optimal treatment for NVCNS is often derived from vestibular schwannomas experience. Surgical resection has been referred to as the first line treatment for those benign tumors, but significant complication rates are reported. Stereotactic radiosurgery (SRS) has arisen as a mainstay of treatment for many benign tumors, including schwanommas. We retrospectively reviewed the outcomes of NVCNS treated by SRS to characterize tumor control, symptom relief, toxicity, and the role of hypo-fractionation of SRS dose. Eighty-eight (88) patients, with ninety-five (95) NVCNS were treated with either single or multi-session SRS from 2001 to 2014. Local control was achieved in 94 % of patients treated (median follow-up of 33 months, range 1-155). Complications were seen in 7.4 % of cases treated with SRS. At 1-year, 57 % of patients had improvement or resolution of their symptoms, while 35 % were stable and 8 % had worsening or increased symptoms. While 42 % received only one session, results on local control were similar for one or multiple sessions (p = 0.424). SRS for NVCNS is a treatment modality that provides excellent local control with minimal complication risk compared to traditional neurosurgical techniques. Tumor control obtained with a multi-session treatment was not significantly different from single session treatment. Safety profile was also comparable for uni or multi-session treatments. We concluded that, as seen in VS treated with CK SRS, radiosurgery treatment can be safely delivered in cases of NVCNS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11060-016-2286-7DOI Listing
January 2017

CyberKnife Stereotactic Radiosurgery for Atypical and Malignant Meningiomas.

World Neurosurg 2016 Jul 20;91:574-581.e1. Epub 2016 Apr 20.

Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA; Stanford Cancer Institute, Stanford University School of Medicine, Palo Alto, California, USA. Electronic address:

Objective: Recurrent World Health Organization (WHO) grade II and III meningiomas have traditionally been treated by surgery alone, but early literature suggests that adjuvant stereotactic radiosurgery may greatly improve outcomes. We present the long-term tumor control and safety of a hypofractionated stereotactic radiosurgery regimen.

Methods: Prospectively collected data of 44 WHO grade II and 9 WHO grade III meningiomas treated by CyberKnife for adjuvant or salvage therapy were reviewed. Patient demographics, treatment parameters, local control, regional control, locoregional control, overall survival, radiation history, and complications were documented.

Results: For WHO grade II patients, recurrence occurred in 41%, with local, regional, and locoregional failure at 60 months recorded as 49%, 58%, and 36%. For WHO grade III patients, recurrence occurred in 66%, with local, regional, and locoregional failure at 12 months recorded as 57%, 100%, and 43%. The 60-month locoregional control rates for radiation naïve and experienced patients were 48% and 0% (P = 0.14). Overall, 7 of 44 grade II patients and 8 of 9 grade III patients had died at last follow-up. The 60-month and 12-month overall survival rates for grade II and III meningiomas were 87% and 50%, respectively. Serious complications occurred in 7.5% of patients.

Conclusions: Stereotactic radiosurgery for adjuvant and salvage treatment of WHO grade II meningioma using a hypofractionated plan is a viable treatment strategy with acceptable long-term tumor control, overall survival, and complication rates. Future studies should focus on radiation-naïve patients and local management of malignant meningioma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2016.04.019DOI Listing
July 2016

Repeat Courses of Stereotactic Radiosurgery (SRS), Deferring Whole-Brain Irradiation, for New Brain Metastases After Initial SRS.

Int J Radiat Oncol Biol Phys 2015 Aug 28;92(5):993-999. Epub 2015 Apr 28.

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California. Electronic address:

Purpose: To report the outcomes of repeat stereotactic radiosurgery (SRS), deferring whole-brain radiation therapy (WBRT), for distant intracranial recurrences and identify factors associated with prolonged overall survival (OS).

Patients And Methods: We retrospectively identified 652 metastases in 95 patients treated with 2 or more courses of SRS for brain metastases, deferring WBRT. Cox regression analyzed factors predictive for OS.

Results: Patients had a median of 2 metastases (range, 1-14) treated per course, with a median of 2 courses (range, 2-14) of SRS per patient. With a median follow-up after first SRS of 15 months (range, 3-98 months), the median OS from the time of the first and second course of SRS was 18 (95% confidence interval [CI] 15-24) and 11 months (95% CI 6-17), respectively. On multivariate analysis, histology, graded prognostic assessment score, aggregate tumor volume (but not number of metastases), and performance status correlated with OS. The 1-year cumulative incidence, with death as a competing risk, of local failure was 5% (95% CI 4-8%). Eighteen (24%) of 75 deaths were from neurologic causes. Nineteen patients (20%) eventually received WBRT. Adverse radiation events developed in 2% of SRS sites.

Conclusion: Multiple courses of SRS, deferring WBRT, for distant brain metastases after initial SRS, seem to be a safe and effective approach. The graded prognostic assessment score, updated at each course, and aggregate tumor volume may help select patients in whom the deferral of WBRT might be most beneficial.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2015.04.036DOI Listing
August 2015

The Parotid Gland is an Underrecognized Organ at Risk for Craniospinal Irradiation.

Technol Cancer Res Treat 2016 06 6;15(3):472-9. Epub 2015 May 6.

Department of Radiation Oncology, Stanford University, Stanford, CA, USA.

Purpose: Current craniospinal irradiation (CSI) protocols do not include the parotid gland as an organ at risk, potentially leading to late effects of xerostomia and secondary parotid malignancies. We analyzed the effect of CSI treatment parameters on parotid dose.

Materials And Methods: We retrospectively reviewed 50 consecutive patients treated with CSI to an intracranial dose >26 Gy. Parotid dose was compared to a Radiation Therapy Oncology Group (RTOG) dose constraint (at least 1 parotid with mean dose <26 Gy). The effects of CSI dose (≤24 Gy vs 24 Gy), volumetric-modulated arc therapy (VMAT) versus 3-dimensional (3D) CSI technique, boost dose (≤24 Gy vs 24 Gy), supratentorial versus infratentorial boost location, intensity-modulated radiation therapy (IMRT)-based versus 3D boost technique, supine versus prone position, and age on parotid dose were analyzed using multivariate regression analysis.

Results: The RTOG parotid dose constraint was exceeded in 22 (44%) of 50 patients. On multivariate regression analysis, lower CSI dose and VMAT CSI technique were associated with reduced parotid dose for the CSI fields. For the boost fields, lower boost dose and supratentorial boost location were associated with lower parotid dose. All 5 patients who underwent VMAT CSI met dose constraints. Furthermore, for infratentorial lesions with a total (CSI plus boost) dose prescription dose >50 Gy (n = 24), 11 of 16 patients who received low-dose CSI (18-23.4 Gy) were able to meet dose constraints, when compared to only 2 of 8 patients who received high dose CSI (36 Gy).

Conclusion: Given the large number of patients exceeding the parotid dose constraint, the parotid gland should be considered an organ at risk. CSI dose de-escalation and IMRT-based CSI techniques may minimize the risk of xerostomia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1533034615583406DOI Listing
June 2016

Risk of leptomeningeal disease in patients treated with stereotactic radiosurgery targeting the postoperative resection cavity for brain metastases.

Int J Radiat Oncol Biol Phys 2013 Nov 18;87(4):713-8. Epub 2013 Sep 18.

Department of Radiation Oncology, Acibadem University School of Medicine, Istanbul, Turkey.

Purpose: We sought to determine the risk of leptomeningeal disease (LMD) in patients treated with stereotactic radiosurgery (SRS) targeting the postsurgical resection cavity of a brain metastasis, deferring whole-brain radiation therapy (WBRT) in all patients.

Methods And Materials: We retrospectively reviewed 175 brain metastasis resection cavities in 165 patients treated from 1998 to 2011 with postoperative SRS. The cumulative incidence rates, with death as a competing risk, of LMD, local failure (LF), and distant brain parenchymal failure (DF) were estimated. Variables associated with LMD were evaluated, including LF, DF, posterior fossa location, resection type (en-bloc vs piecemeal or unknown), and histology (lung, colon, breast, melanoma, gynecologic, other).

Results: With a median follow-up of 12 months (range, 1-157 months), median overall survival was 17 months. Twenty-one of 165 patients (13%) developed LMD at a median of 5 months (range, 2-33 months) following SRS. The 1-year cumulative incidence rates, with death as a competing risk, were 10% (95% confidence interval [CI], 6%-15%) for developing LF, 54% (95% CI, 46%-61%) for DF, and 11% (95% CI, 7%-17%) for LMD. On univariate analysis, only breast cancer histology (hazard ratio, 2.96) was associated with an increased risk of LMD. The 1-year cumulative incidence of LMD was 24% (95% CI, 9%-41%) for breast cancer compared to 9% (95% CI, 5%-14%) for non-breast histology (P=.004).

Conclusions: In patients treated with SRS targeting the postoperative cavity following resection, those with breast cancer histology were at higher risk of LMD. It is unknown whether the inclusion of whole-brain irradiation or novel strategies such as preresection SRS would improve this risk or if the rate of LMD is inherently higher with breast histology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2013.07.034DOI Listing
November 2013

Cavity volume dynamics after resection of brain metastases and timing of postresection cavity stereotactic radiosurgery.

Neurosurgery 2013 Feb;72(2):180-5; discussion 185

Department of Radiation Oncology, Acibadem University School of Medicine, Istanbul, Turkey.

Background: An alternative treatment option to whole-brain irradiation after surgical resection of brain metastases is resection cavity stereotactic radiosurgery (SRS).

Objective: To review the dynamics of cavity volume change after surgical resection with the goal of determining the optimal timing for cavity SRS.

Methods: Preresection tumor, postresection/pre-SRS cavity, and post-SRS cavity volumes were measured for 68 cavities in 63 patients treated with surgery and postresection cavity SRS. Percent differences between volumes were calculated and correlation analyses were performed to assess volume changes before and after SRS.

Results: For the majority of tumors, the postresection cavity volume was smaller than the preresection tumor volume by a median percent volume change of -29% (range, -82% to 1258%), with larger preresection tumors resulting in greater cavity shrinkage (P < .001). To determine the optimal timing for cavity SRS, we examined cavity volume dynamics by comparing the early postresection (postoperative days 0-3) and treatment planning magnetic resonance imaging scans (median time to magnetic resonance imaging, 20 days; range, 9-33 days) and found no association between the postresection day number and volume change (P = .75). The volume decrease resulting from tumor resection was offset by the addition of a 2-mm clinical target volume margin, which is our current technique.

Conclusion: The greatest volume change occurs immediately after surgery (postoperative days 0-3) with no statistically significant volume change occurring up to 33 days after surgery for most patients. Therefore, there is no benefit of cavity shrinkage in waiting longer than the first 1 to 2 weeks to perform cavity SRS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1227/NEU.0b013e31827b99f3DOI Listing
February 2013

Stereotactic radiosurgery of the postoperative resection cavity for brain metastases: prospective evaluation of target margin on tumor control.

Int J Radiat Oncol Biol Phys 2012 Oct 30;84(2):336-42. Epub 2012 May 30.

Department of Neurosurgery, Stanford University Medical Center, Stanford, California 94305-5847, USA.

Purpose: Given the neurocognitive toxicity associated with whole-brain irradiation (WBRT), approaches to defer or avoid WBRT after surgical resection of brain metastases are desirable. Our initial experience with stereotactic radiosurgery (SRS) targeting the resection cavity showed promising results. We examined the outcomes of postoperative resection cavity SRS to determine the effect of adding a 2-mm margin around the resection cavity on local failure (LF) and toxicity.

Patients And Methods: We retrospectively evaluated 120 cavities in 112 patients treated from 1998-2009. Factors associated with LF and distant brain failure (DF) were analyzed using competing risks analysis, with death as a competing risk. The overall survival (OS) rate was calculated by the Kaplan-Meier product-limit method; variables associated with OS were evaluated using the Cox proportional hazards and log rank tests.

Results: The 12-month cumulative incidence rates of LF and DF, with death as a competing risk, were 9.5% and 54%, respectively. On univariate analysis, expansion of the cavity with a 2-mm margin was associated with decreased LF; the 12-month cumulative incidence rates of LF with and without margin were 3% and 16%, respectively (P=.042). The 12-month toxicity rates with and without margin were 3% and 8%, respectively (P=.27). On multivariate analysis, melanoma histology (P=.038) and number of brain metastases (P=.0097) were associated with higher DF. The median OS time was 17 months (range, 2-114 months), with a 12-month OS rate of 62%. Overall, WBRT was avoided in 72% of the patients.

Conclusion: Adjuvant SRS targeting the resection cavity of brain metastases results in excellent local control and allows WBRT to be avoided in a majority of patients. A 2-mm margin around the resection cavity improved local control without increasing toxicity compared with our prior technique with no margin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2011.12.009DOI Listing
October 2012

What is the optimal treatment of large brain metastases? An argument for a multidisciplinary approach.

Int J Radiat Oncol Biol Phys 2012 Nov 22;84(3):688-93. Epub 2012 Mar 22.

Department of Neurosurgery, Stanford University Medical Center, Stanford, CA 94305-5847, USA.

Purpose: Single-modality treatment of large brain metastases (>2 cm) with whole-brain irradiation, stereotactic radiosurgery (SRS) alone, or surgery alone is not effective, with local failure (LF) rates of 50% to 90%. Our goal was to improve local control (LC) by using multimodality therapy of surgery and adjuvant SRS targeting the resection cavity.

Patients And Methods: We retrospectively evaluated 97 patients with brain metastases >2 cm in diameter treated with surgery and cavity SRS. Local and distant brain failure (DF) rates were analyzed with competing risk analysis, with death as a competing risk. The overall survival rate was calculated by the Kaplain-Meier product-limit method.

Results: The median imaging follow-up duration for all patients was 10 months (range, 1-80 months). The 12-month cumulative incidence rates of LF, with death as a competing risk, were 9.3% (95% confidence interval [CI], 4.5%-16.1%), and the median time to LF was 6 months (range, 3-17 months). The 12-month cumulative incidence rate of DF, with death as a competing risk, was 53% (95% CI, 43%-63%). The median survival time for all patients was 15.6 months. The median survival times for recursive partitioning analysis classes 1, 2, and 3 were 33.8, 13.7, and 9.0 months, respectively (p = 0.022). On multivariate analysis, Karnofsky Performance Status (≥80 vs. <80; hazard ratio 0.54; 95% CI 0.31-0.94; p = 0.029) and maximum preoperative tumor diameter (hazard ratio 1.41; 95% CI 1.08-1.85; p = 0.013) were associated with survival. Five patients (5%) required intervention for Common Terminology Criteria for Adverse Events v4.02 grade 2 and 3 toxicity.

Conclusion: Surgery and adjuvant resection cavity SRS yields excellent LC of large brain metastases. Compared with other multimodality treatment options, this approach allows patients to avoid or delay whole-brain irradiation without compromising LC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2012.01.028DOI Listing
November 2012

A planned neck dissection is not necessary in all patients with N2-3 head-and-neck cancer after sequential chemoradiotherapy.

Int J Radiat Oncol Biol Phys 2012 Jul 2;83(3):994-9. Epub 2011 Dec 2.

Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA 94305-5847, USA.

Purpose: To assess the role of a planned neck dissection (PND) after sequential chemoradiotherapy for patients with head-and-neck cancer with N2-N3 nodal disease.

Methods And Materials: We reviewed 90 patients with N2-N3 head-and-neck squamous cell carcinoma treated between 1991 and 2001 on two sequential chemoradiotherapy protocols. All patients received induction and concurrent chemotherapy with cisplatin and 5-fluorocuracil, with or without tirapazamine. Patients with less than a clinical complete response (cCR) in the neck proceeded to a PND after chemoradiation. The primary endpoint was nodal response. Clinical outcomes and patterns of failure were analyzed.

Results: The median follow-up durations for living and all patients were 8.3 years (range, 1.5-16.3 year) and 5.4 years (range, 0.6-16.3 years), respectively. Of the 48 patients with nodal cCR whose necks were observed, 5 patients had neck failures as a component of their recurrence [neck and primary (n = 2); neck, primary, and distant (n = 1); neck only (n = 1); neck and distant (n = 1)]. Therefore, PND may have benefited only 2 patients (4%) [neck only failure (n = 1); neck and distant failure (n = 1)]. The pathologic complete response (pCR) rate for those with a clinical partial response (cPR) undergoing PND (n = 30) was 53%. The 5-year neck control rates after cCR, cPR→pCR, and cPR→pPR were 90%, 93%, and 78%, respectively (p = 0.36). The 5-year disease-free survival rates for the cCR, cPR→pCR, and cPR→pPR groups were 53%, 75%, and 42%, respectively (p = 0.04).

Conclusion: In our series, patients with N2-N3 neck disease achieving a cCR in the neck, PND would have benefited only 4% and, therefore, is not recommended. Patients with a cPR should be treated with PND. Residual tumor in the PND specimens was associated with poor outcomes; therefore, aggressive therapy is recommended. Studies using novel imaging modalities are needed to better assess treatment response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2011.07.042DOI Listing
July 2012

Stereotactic radiosurgery yields long-term control for benign intradural, extramedullary spinal tumors.

Neurosurgery 2011 Sep;69(3):533-9; discussion 539

Department of Radiation Oncology, Stanford University Cancer Center, Stanford, California, USA.

Background: The role of stereotactic radiosurgery in the treatment of benign intracranial lesions is well established. Although a growing body of evidence supports its role in the treatment of malignant spinal lesions, a much less extensive dataset exists for treatment of benign spinal tumors.

Objective: To examine the safety and efficacy of stereotactic radiosurgery for treatment of benign, intradural extramedullary spinal tumors.

Methods: From 1999 to 2008, 87 patients with 103 benign intradural extramedullary spinal tumors (32 meningiomas, 24 neurofibromas, and 47 schwannomas) were treated with stereotactic radiosurgery at Stanford University Medical Center. Forty-three males and 44 females had a median age of 53 years (range, 12-86). Twenty-five patients had neurofibromatosis. Treatment was delivered in 1 to 5 sessions (median, 2) with a mean prescription dose of 19.4 Gy (range, 14-30 Gy) to an average tumor volume of 5.24 cm (range, 0.049-54.52 cm).

Results: After a mean radiographic follow-up period of 33 months (range, 6-87), including 21 lesions followed for ≥ 48 months, 59% were stable, 40% decreased in size, and a single tumor (1%) increased in size. Clinically, 91%, 67%, and 86% of meningiomas, neurofibromas, and schwannomas, respectively, were symptomatically stable to improved at last follow-up. One patient with a meningioma developed a new, transient myelopathy at 9 months, although the tumor was smaller at last follow-up.

Conclusion: As a viable alternative to microsurgical resection, stereotactic radiosurgery provides safe and efficacious long-term control of benign intradural, extramedullary spinal tumors with a low rate of complication.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1227/NEU.0b013e318218db23DOI Listing
September 2011

Multisession stereotactic radiosurgery for vestibular schwannomas: single-institution experience with 383 cases.

Neurosurgery 2011 Dec;69(6):1200-9

Division of Neurological Surgery, Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

Background: Single-session stereotactic radiosurgery (SRS) treatment of vestibular schwannomas results in excellent tumor control. It is not known whether functional outcomes can be improved by fractionating the treatment over multiple sessions.

Objective: To examine tumor control and complication rates after multisession SRS.

Methods: Three hundred eighty-three patients treated with SRS from 1999 to 2007 at Stanford University Medical Center were retrospectively reviewed. Ninety percent were treated with 18 Gy in 3 sessions, targeting a median tumor volume of 1.1 cm3 (range, 0.02-19.8 cm3).

Results: During a median follow-up duration of 3.6 years (range, 1-10 years), 10 tumors required additional treatment, resulting in 3- and 5-year Kaplan-Meier tumor control rates of 99% and 96%, respectively. Five-year tumor control rate was 98% for tumors < 3.4 cm3. Neurofibromatosis type 2-associated tumors were associated with worse tumor control (P = .02). Of the 200 evaluable patients with pre-SRS serviceable hearing (Gardner-Robertson grade 1 and 2), the crude rate of serviceable hearing preservation was 76%. Smaller tumor volume was associated with hearing preservation (P = .001). There was no case of post-SRS facial weakness. Eight patients (2%) developed trigeminal dysfunction, half of which was transient.

Conclusion: Multisession SRS treatment of vestibular schwannomas results in an excellent rate of tumor control. The hearing, trigeminal nerve, and facial nerve function preservation rates reported here are promising.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1227/NEU.0b013e318222e451DOI Listing
December 2011

Normal tissue complication probability estimation by the Lyman-Kutcher-Burman method does not accurately predict spinal cord tolerance to stereotactic radiosurgery.

Int J Radiat Oncol Biol Phys 2012 Apr 29;82(5):2025-32. Epub 2011 Apr 29.

Department of Radiation Oncology, Stanford University, Stanford, CA, USA.

Purpose: To determine whether normal tissue complication probability (NTCP) analyses of the human spinal cord by use of the Lyman-Kutcher-Burman (LKB) model, supplemented by linear-quadratic modeling to account for the effect of fractionation, predict the risk of myelopathy from stereotactic radiosurgery (SRS).

Methods And Materials: From November 2001 to July 2008, 24 spinal hemangioblastomas in 17 patients were treated with SRS. Of the tumors, 17 received 1 fraction with a median dose of 20 Gy (range, 18-30 Gy) and 7 received 20 to 25 Gy in 2 or 3 sessions, with cord maximum doses of 22.7 Gy (range, 17.8-30.9 Gy) and 22.0 Gy (range, 20.2-26.6 Gy), respectively. By use of conventional values for α/β, volume parameter n, 50% complication probability dose TD(50), and inverse slope parameter m, a computationally simplified implementation of the LKB model was used to calculate the biologically equivalent uniform dose and NTCP for each treatment. Exploratory calculations were performed with alternate values of α/β and n.

Results: In this study 1 case (4%) of myelopathy occurred. The LKB model using radiobiological parameters from Emami and the logistic model with parameters from Schultheiss overestimated complication rates, predicting 13 complications (54%) and 18 complications (75%), respectively. An increase in the volume parameter (n), to assume greater parallel organization, improved the predictive value of the models. Maximum-likelihood LKB fitting of α/β and n yielded better predictions (0.7 complications), with n = 0.023 and α/β = 17.8 Gy.

Conclusions: The spinal cord tolerance to the dosimetry of SRS is higher than predicted by the LKB model using any set of accepted parameters. Only a high α/β value in the LKB model and only a large volume effect in the logistic model with Schultheiss data could explain the low number of complications observed. This finding emphasizes that radiobiological models traditionally used to estimate spinal cord NTCP may not apply to the dosimetry of SRS. Further research with additional NTCP models is needed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2011.03.004DOI Listing
April 2012

Tolerance of the spinal cord to stereotactic radiosurgery: insights from hemangioblastomas.

Int J Radiat Oncol Biol Phys 2011 May;80(1):213-20

Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA 94305-5847, USA.

Purpose: To evaluate spinal cord dose-volume effects, we present a retrospective review of stereotactic radiosurgery (SRS) treatments for spinal cord hemangioblastomas.

Methods And Materials: From November 2001 to July 2008, 27 spinal hemangioblastomas were treated in 19 patients with SRS. Seventeen tumors received a single fraction with a median dose of 20 Gy (range, 18-30 Gy). Ten lesions were treated using 18-25 Gy in two to three sessions. Cord volumes receiving 8, 10, 12, 14, 16, 18, 20, 22, and 24 Gy and dose to 10, 100, 250, 500, 1000, and 2000 mm(3) of cord were determined. Multisession treatments were converted to single-fraction biologically effective dose (SFBED).

Results: Single-fraction median cord D(max) was 22.7 Gy (range, 17.8-30.9 Gy). Median V10 was 454 mm(3) (range, 226-3543 mm(3)). Median dose to 500 mm(3) cord was 9.5 Gy (range, 5.3-22.5 Gy). Fractionated median SFBED(3) cord D(max) was 14.1 Gy(3) (range, 12.3-19.4 Gy(3)). Potential toxicities included a Grade 2 unilateral foot drop 5 months after SRS and 2 cases of Grade 1 sensory deficits. The actuarial 3-year local tumor control estimate was 86%.

Conclusions: Despite exceeding commonly cited spinal cord dose constraints, SRS for spinal hemangioblastomas is safe and effective. Consistent with animal experiments, these data support a partial-volume tolerance model for the human spinal cord. Because irradiated cord volumes were generally small, application of these data to other clinical scenarios should be made cautiously. Further prospective studies of spinal radiosurgery are needed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2010.01.040DOI Listing
May 2011

Stereotactic radiosurgery of cranial nonvestibular schwannomas: results of single- and multisession radiosurgery.

Neurosurgery 2011 May;68(5):1200-8; discussion 1208

Department of Neurosurgery, Stanford University Medical Center, Stanford, California, USA.

Background: Surgical resection of nonvestibular cranial schwannomas carries a considerable risk of postoperative complications. Stereotactic radiosurgery (SRS) offers a non-invasive treatment alternative. The efficacy and safety of multi-session SRS of nonvestibular cranial schwannomas has not been well studied.

Objective: To analyze the results of single- and multi-session SRS of nonvestibular cranial schwannomas.

Methods: From 2001 to 2007, 42 lesions in 40 patients were treated with SRS at Stanford University Medical Center, targeting schwannomas of cranial nerves IV (n = 1), V (n = 18), VII (n = 6), X (n = 5), XII (n = 2), jugular foramen (n = 8), and cavernous sinus (n = 2). SRS was delivered to a median marginal dose of 18 Gy (range, 15-33 Gy) in 1 to 3 sessions, targeting a median tumor volume of 3.2 cm (range, 0.1-23.7 cm). The median doses for treatments in 1 (n = 18), 2 (n = 9), and 3 (n = 15) sessions were 17.5, 20, and 18 Gy, respectively.

Results: With a median follow-up of 29 months (range, 6-84 months), tumor control was achieved in 41 of the 42 lesions. Eighteen of 42 lesions (43%) decreased in size; 23 tumors (55%) remained stable. There were 2 cases of new or worsening cranial nerve deficits in patients treated in single session; no patient treated with multi-session SRS experienced any cranial nerve toxicity (P = 0.18).

Conclusion: SRS of nonvestibular cranial schwannomas provides excellent tumor control with minimal risk of complications. There was a trend towards decreased complications with multi-session SRS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1227/NEU.0b013e31820c0474DOI Listing
May 2011

Cyberknife stereotactic radiosurgery for treatment of atypical (WHO grade II) cranial meningiomas.

Neurosurgery 2010 Nov;67(5):1180-8

Department of Neurosurgery, Stanford University Medical Center, Stanford, California, USA.

Background: The optimal management of subtotally resected atypical meningiomas is unknown.

Objective: To perform a retrospective review of patients with residual or recurrent atypical meningiomas treated with stereotactic radiosurgery (SRS).

Methods: Twenty-five patients were treated, either immediately after surgery (n = 15) or at the time of radiographic progression or treatment failure (n = 10). SRS was delivered to with a median marginal dose of 22 Gy (range, 16-30) in 1 to 4 fractions (median, 1), targeting a median tumor volume of 5.3 cm³ (range, 0.3-26.0).

Results: With a median follow-up time of 28 months (range, 3-67), the 12-, 24-, and 36-month actuarial local and regional control rates for all patients were 94%, 94%, 74%, and 90%, 90%, 62%, respectively. There were 2 cases of radiation toxicity. On univariate analysis, the number of recurrences before SRS (P = .046), late SRS (ie, waiting until tumor progression to initiate treatment) (P = .03), and age at treatment ≥ 60 years (P = .01) were significant predictors of recurrence. Of the 20 radiation-naïve patients, 2 patients failed with the targeted lesion and 3 elsewhere in the resection bed, resulting in 12-, 24- and 36-month actuarial local and regional control rates of 100%, 100%, 73% and 93%, 93%, 75%, respectively. The overall locoregional control rates at 12, 24, and 36 months were 93%, 93%, and 54%, respectively.

Conclusion: Irradiation of the entire postoperative tumor bed may not be necessary for the majority of patients with subtotally resected atypical meningiomas. Patients in this series achieved outcomes comparable to that of historical control rates for larger volume, conventionally fractionated radiotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1227/NEU.0b013e3181f2f427DOI Listing
November 2010

Stereotactic radiosurgery for treatment of spinal metastases recurring in close proximity to previously irradiated spinal cord.

Int J Radiat Oncol Biol Phys 2010 Oct 3;78(2):499-506. Epub 2010 Feb 3.

Department of Neurosurgery, Stanford University Medical Center, CA, USA.

Purpose: As the spinal cord tolerance often precludes reirradiation with conventional techniques, local recurrence within a previously irradiated field presents a treatment challenge.

Methods And Materials: We retrospectively reviewed 51 lesions in 42 patients treated from 2002 to 2008 whose spinal metastases recurred in a previous radiation field (median previous spinal cord dose of 40 Gy) and were subsequently treated with stereotactic radiosurgery (SRS).

Results: SRS was delivered to a median marginal dose of 20 Gy (range, 10-30 Gy) in 1-5 fractions (median, 2), targeting a median tumor volume of 10.3 cm(3) (range, 0.2-128.6 cm(3)). Converting the SRS regimens with the linear quadratic model (α/β = 3), the median spinal cord maximum single-session equivalent dose (SSED) was 12.1 Gy(3) (range, 4.7-19.3 Gy(3)). With a median follow-up of 7 months (range, 2-47 months), the Kaplan-Meier local control and overall survival rates at 6/12 months were 87%/73% and 81%/68%, respectively. A time to retreatment of ≤12 months and the combination of time to retreatment of ≤12 months with an SSED of <15 Gy(10) were significant predictors of local failure on univariate and multivariate analyses. In patients with a retreatment interval of <12 months, 6/12 month local control rates were 88%/58%, with a SSED of >15 Gy(10), compared to 45%/0% with <15 Gy(10), respectively. One patient (2%) experienced Grade 4 neurotoxicity.

Conclusion: SRS is safe and effective in the treatment of spinal metastases recurring in previously irradiated fields. Tumor recurrence within 12 months may correlate with biologic aggressiveness and require higher SRS doses (SSED >15 Gy(10)). Further research is needed to define the partial volume retreatment tolerance of the spinal cord and the optimal target dose.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2009.07.1727DOI Listing
October 2010

Stereotactic radiosurgical treatment of cranial and spinal hemangioblastomas.

Neurosurgery 2009 Jul;65(1):79-85; discussion 85

Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305, USA.

Objective: Stereotactic radiosurgery has been used for nearly 2 decades to treat hemangioblastomas, particularly those that are in surgically inaccessible locations or that are multiple, as is common in von Hippel-Lindau disease. There is a paucity of long-term published radiosurgical treatment outcomes, particularly for spinal lesions, in a large patient population. The purpose of this study was to provide a long-term retrospective evaluation of radiosurgical hemangioblastoma treatment effectiveness, with a special emphasis on the relatively recent use of frameless, image-guided radiosurgery in the treatment of spinal lesions.

Methods: From 1991 to 2007, 92 hemangioblastomas in 31 patients, 26 with von Hippel-Lindau disease, were treated with radiosurgery (27 tumors treated with frame-based linear accelerator radiosurgery, and 67 tumors were treated with CyberKnife radiosurgery). The mean patient age was 41 years (range, 18-81 years). The radiation dose to the tumor periphery averaged 23.4 Gy (range, 12-40 Gy). The mean tumor volume was 1.8 cm (range, 0.058-65.4 cm). Tumor response was evaluated in serial, contrast-enhanced, computed tomographic, and magnetic resonance imaging scans.

Results: Clinical and radiographic follow-up data were available for 82 hemangioblastoma tumors. Only 13 (16%) of the treated hemangioblastomas progressed, whereas 18 tumors (22%) showed radiographic regression, and 51 tumors (62%) remained unchanged in size. With median follow-up of 69 months (range, 5-164 months), the actuarial local control rates at 36 and 60 months were 85% and 82%, respectively. Radiosurgery improved lesion-associated symptoms in 36 of 41 tumors. During the follow-up period, 9 patients died of causes unrelated to the progression of their treated hemangioblastomas, and 5 patients developed radiation necrosis.

Conclusion: Stereotactic radiosurgery is safe and effective in the treatment of hemangioblastomas and is an attractive alternative to surgery for patients, including those with von Hippel-Lindau disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1227/01.NEU.0000348015.51685.D2DOI Listing
July 2009

Molecular imaging of hypoxia-inducible factor 1 alpha and von Hippel-Lindau interaction in mice.

Mol Imaging 2008 May-Jun;7(3):139-46

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305-5152, USA.

Tumor hypoxia plays a crucial role in tumorigenesis. Under hypoxia, hypoxia-inducible factor 1 alpha (HIF-1 alpha) regulates activation of genes promoting malignant progression. Under normoxia, HIF-1 alpha is hydroxylated on prolines 402 and 564 and is targeted for ubiquitin-mediated degradation by interacting with the von Hippel-Lindau protein complex (pVHL). We have developed a novel method of studying the interaction between HIF-1 alpha and pVHL using the split firefly luciferase complementation-based bioluminescence system in which HIF-1 alpha and pVHL are fused to amino-terminal and carboxy-terminal fragments of the luciferase, respectively. We demonstrate that hydroxylation-dependent interaction between the HIF-1 alpha and pVHL leads to complementation of the two luciferase fragments, resulting in bioluminescence in vitro and in vivo. Complementation-based bioluminescence is diminished when mutant pVHLs with decreased affinity for binding HIF-1 alpha are used. This method represents a new approach for studying interaction of proteins involved in the regulation of protein degradation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157628PMC
March 2009

Stereotactic radiosurgery of the postoperative resection cavity for brain metastases.

Int J Radiat Oncol Biol Phys 2008 Jan 19;70(1):187-93. Epub 2007 Sep 19.

Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA, USA.

Purpose: The purpose of this study was to analyze results of adjuvant stereotactic radiosurgery (SRS) targeted at resection cavities of brain metastases without whole-brain irradiation (WBI).

Methods And Materials: Patients who underwent SRS to the tumor bed, deferring WBI after resection of a brain metastasis, were retrospectively identified.

Results: Seventy-two patients with 76 cavities treated from 1998 to 2006 met inclusion criteria. The SRS was delivered to a median marginal dose of 18.6 Gy (range, 15-30 Gy) targeting an average tumor volume of 9.8 cm(3) (range, 0.1-66.8 cm(3)). With a median follow-up of 8.1 months (range, 0.1-80.5 months), 65 patients had follow-up imaging assessable for control analyses. Actuarial local control rates at 6 and 12 months were 88% and 79%, respectively. On univariate analysis, increasing values of conformality indices were the only treatment variables that correlated significantly with improved local control; local control was 100% for the least conformal quartile compared with 63% for the remaining quartiles. Target volume, dose, and number of sessions were not statistically significant.

Conclusions: In this retrospective series, SRS administered to the resection cavity of brain metastases resulted in a 79% local control rate at 12 months. This value compares favorably with historic results with observation alone (54%) and postoperative WBI (80-90%). Given the improved local control seen with less conformal plans, we recommend inclusion of a 2-mm margin around the resection cavity when using this technique.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2007.06.068DOI Listing
January 2008

A noninvasive approach for assessing tumor hypoxia in xenografts: developing a urinary marker for hypoxia.

Cancer Res 2005 Jul;65(14):6151-8

Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847, USA.

Tumor hypoxia modifies the efficacy of conventional anticancer therapy and promotes malignant tumor progression. Human chorionic gonadotropin (hCG) is a glycoprotein secreted during pregnancy that has been used to monitor tumor burden in xenografts engineered to express this marker. We adapted this approach to use urinary beta-hCG as a secreted reporter protein for tumor hypoxia. We used a hypoxia-inducible promoter containing five tandem repeats of the hypoxia-response element (HRE) ligated upstream of the beta-hCG gene. This construct was stably integrated into two different cancer cell lines, FaDu, a human head and neck squamous cell carcinoma, and RKO, a human colorectal cancer cell line. In vitro studies showed that tumor cells stably transfected with this plasmid construct secrete beta-hCG in response to hypoxia or hypoxia-inducible factor 1alpha (HIF-1alpha) stabilizing agents. The hypoxia responsiveness of this construct can be blocked by treatment with agents that affect the HIF-1alpha pathways, including topotecan, 1-benzyl-3-(5'-hydroxymethyl-2'-furyl)indazole (YC-1), and flavopiridol. Immunofluorescent analysis of tumor sections and quantitative assessment with flow cytometry indicate colocalization between beta-hCG and 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide (EF5) and beta-hCG and pimonidazole, two extrinsic markers for tumor hypoxia. Secretion of beta-hCG from xenografts that contain these stable constructs is directly responsive to changes in tumor oxygenation, including exposure of the animals to 10% O2 and tumor bed irradiation. Similarly, urinary beta-hCG levels decline after treatment with flavopiridol, an inhibitor of HIF-1 transactivation. This effect was observed only in tumor cells expressing a HRE-regulated reporter gene and not in tumor cells expressing a cytomegalovirus-regulated reporter gene. The 5HRE beta-hCG reporter system described here enables serial, noninvasive monitoring of tumor hypoxia in a mouse model by measuring a urinary reporter protein.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-04-2602DOI Listing
July 2005

Interference with heme binding to histidine-rich protein-2 as an antimalarial strategy.

Chem Biol 2002 Aug;9(8):881-9

Department of Biological Chemistry, Howard Hughes Medical Institute, Ann Arbor, MI 48109, USA.

The erythrocytic growth stage of Plasmodium falciparum involves hemoglobin proteolysis as the primary nutrient source with the concomitant release of free heme. The liberated heme is processed by the parasite into hemozoin, a polymeric porphyrin dimer. Histidine-rich protein binds heme and mediates the formation of hemozoin, which is inhibited by the antimalarial drug chloroquine. Interference with heme binding was determined using a microtiterplate assay. Combinatorial libraries were screened and tested against parasite growth, revealing a good correlation between heme binding interference and the inhibition of parasite growth. Several of these compounds retain their potency against a chloroquine-resistant strain of Plasmodium falciparum. The most potent compounds have IC(50) values less than or equal to 50 nM against chloroquine-resistant and chloroquine-sensitive parasites.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1074-5521(02)00183-7DOI Listing
August 2002