Publications by authors named "Clara Poupault"

2 Publications

  • Page 1 of 1

A combinatorial cis-regulatory logic restricts color-sensing Rhodopsins to specific photoreceptor subsets in Drosophila.

PLoS Genet 2021 Jun 23;17(6):e1009613. Epub 2021 Jun 23.

Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America.

Color vision in Drosophila melanogaster is based on the expression of five different color-sensing Rhodopsin proteins in distinct subtypes of photoreceptor neurons. Promoter regions of less than 300 base pairs are sufficient to reproduce the unique, photoreceptor subtype-specific rhodopsin expression patterns. The underlying cis-regulatory logic remains poorly understood, but it has been proposed that the rhodopsin promoters have a bipartite structure: the distal promoter region directs the highly restricted expression in a specific photoreceptor subtype, while the proximal core promoter region provides general activation in all photoreceptors. Here, we investigate whether the rhodopsin promoters exhibit a strict specialization of their distal (subtype specificity) and proximal (general activation) promoter regions, or if both promoter regions contribute to generating the photoreceptor subtype-specific expression pattern. To distinguish between these two models, we analyze the expression patterns of a set of hybrid promoters that combine the distal promoter region of one rhodopsin with the proximal core promoter region of another rhodopsin. We find that the function of the proximal core promoter regions extends beyond providing general activation: these regions play a previously underappreciated role in generating the non-overlapping expression patterns of the different rhodopsins. Therefore, cis-regulatory motifs in both the distal and the proximal core promoter regions recruit transcription factors that generate the unique rhodopsin patterns in a combinatorial manner. We compare this combinatorial regulatory logic to the regulatory logic of olfactory receptor genes and discuss potential implications for the evolution of rhodopsins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1009613DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259978PMC
June 2021

Mechanisms of vitamin A metabolism and deficiency in the mammalian and fly visual system.

Dev Biol 2021 Aug 25;476:68-78. Epub 2021 Mar 25.

Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, USA. Electronic address:

Vitamin A deficiency can cause human pathologies that range from blindness to embryonic malformations. This diversity is due to the lack of two major vitamin A metabolites with very different functions: the chromophore 11-cis-retinal (vitamin A aldehyde) is a critical component of the visual pigment that mediates phototransduction, while the signaling molecule all-trans-retinoic acid regulates the development of various tissues and is required for the function of the immune system. Since animals cannot synthesize vitamin A de novo, they must obtain it either as preformed vitamin A from animal products or as carotenoid precursors from plant sources. Due to its essential role in the visual system, acute vitamin A deprivation impairs photoreceptor function and causes night blindness (poor vision under dim light conditions), while chronic deprivation results in retinal dystrophies and photoreceptor cell death. Chronic vitamin A deficiency is the leading cause of preventable childhood blindness according to the World Health Organization. Due to the requirement of vitamin A for retinoic acid signaling in development and in the immune system, vitamin A deficiency also causes increased mortality in children and pregnant women in developing countries. Drosophila melanogaster is an excellent model to study the effects of vitamin A deprivation on the eye because vitamin A is not essential for Drosophila development and chronic deficiency does not cause lethality. Moreover, genetic screens in Drosophila have identified evolutionarily conserved factors that mediate the production of vitamin A and its cellular uptake. Here, we review our current knowledge about the role of vitamin A in the visual system of mammals and Drosophila melanogaster. We compare the molecular mechanisms that mediate the uptake of dietary vitamin A precursors and the metabolism of vitamin A, as well as the consequences of vitamin A deficiency for the structure and function of the eye.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2021.03.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172435PMC
August 2021
-->