Publications by authors named "Clara Moreau"

18 Publications

  • Page 1 of 1

Lessons Learned From Neuroimaging Studies of Copy Number Variants: A Systematic Review.

Biol Psychiatry 2021 11 15;90(9):596-610. Epub 2021 Jun 15.

Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada; Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada. Electronic address:

Pathogenic copy number variants (CNVs) and aneuploidies alter gene dosage and are associated with neurodevelopmental psychiatric disorders such as autism spectrum disorder and schizophrenia. Brain mechanisms mediating genetic risk for neurodevelopmental psychiatric disorders remain largely unknown, but there is a rapid increase in morphometry studies of CNVs using T1-weighted structural magnetic resonance imaging. Studies have been conducted one mutation at a time, leaving the field with a complex catalog of brain alterations linked to different genomic loci. Our aim was to provide a systematic review of neuroimaging phenotypes across CNVs associated with developmental psychiatric disorders including autism and schizophrenia. We included 76 structural magnetic resonance imaging studies on 20 CNVs at the 15q11.2, 22q11.2, 1q21.1 distal, 16p11.2 distal and proximal, 7q11.23, 15q11-q13, and 22q13.33 (SHANK3) genomic loci as well as aneuploidies of chromosomes X, Y, and 21. Moderate to large effect sizes on global and regional brain morphometry are observed across all genomic loci, which is in line with levels of symptom severity reported for these variants. This is in stark contrast with the much milder neuroimaging effects observed in idiopathic psychiatric disorders. Data also suggest that CNVs have independent effects on global versus regional measures as well as on cortical surface versus thickness. Findings highlight a broad diversity of regional morphometry patterns across genomic loci. This heterogeneity of brain patterns provides insight into the weak effects reported in magnetic resonance imaging studies of cognitive dimension and psychiatric conditions. Neuroimaging studies across many more variants will be required to understand links between gene function and brain morphometry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsych.2021.05.028DOI Listing
November 2021

Interindividual Differences in Cortical Thickness and Their Genomic Underpinnings in Autism Spectrum Disorder.

Am J Psychiatry 2021 Sep 10:appiajp202120050630. Epub 2021 Sep 10.

Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker, Bletsch, Mann, Schaefer, Yousaf, Chiocchetti, Bast, Freitag).

Objective: Autism spectrum disorder (ASD) is accompanied by highly individualized neuroanatomical deviations that potentially map onto distinct genotypes and clinical phenotypes. This study aimed to link differences in brain anatomy to specific biological pathways to pave the way toward targeted therapeutic interventions.

Methods: The authors examined neurodevelopmental differences in cortical thickness and their genomic underpinnings in a large and clinically diverse sample of 360 individuals with ASD and 279 typically developing control subjects (ages 6-30 years) within the EU-AIMS Longitudinal European Autism Project (LEAP). The authors also examined neurodevelopmental differences and their potential pathophysiological mechanisms between clinical ASD subgroups that differed in the severity and pattern of sensory features.

Results: In addition to significant between-group differences in "core" ASD brain regions (i.e., fronto-temporal and cingulate regions), individuals with ASD manifested as neuroanatomical outliers within the neurotypical cortical thickness range in a wider neural system, which was enriched for genes known to be implicated in ASD on the genetic and/or transcriptomic level. Within these regions, the individuals' total (i.e., accumulated) degree of neuroanatomical atypicality was significantly correlated with higher polygenic scores for ASD and other psychiatric conditions, and it scaled with measures of symptom severity. Differences in cortical thickness deviations were also associated with distinct sensory subgroups, especially in brain regions expressing genes involved in excitatory rather than inhibitory neurotransmission.

Conclusions: The study findings corroborate the link between macroscopic differences in brain anatomy and the molecular mechanisms underpinning heterogeneity in ASD, and provide future targets for stratification and subtyping.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1176/appi.ajp.2021.20050630DOI Listing
September 2021

Effects of eight neuropsychiatric copy number variants on human brain structure.

Transl Psychiatry 2021 07 20;11(1):399. Epub 2021 Jul 20.

Douglas Research Centre, McGill University, Montréal, QC, Canada.

Many copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen's d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-021-01490-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292542PMC
July 2021

Structural and functional brain alterations revealed by neuroimaging in CNV carriers.

Curr Opin Genet Dev 2021 06 31;68:88-98. Epub 2021 Mar 31.

Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California, Los Angeles, USA. Electronic address:

Copy Number Variants (CNVs) are associated with elevated rates of neuropsychiatric disorders. A 'genetics-first' approach, involving the CNV effects on the brain, irrespective of clinical symptomatology, allows investigation of mechanisms underlying neuropsychiatric disorders in the general population. Recent years have seen an increasing number of larger multisite neuroimaging studies investigating the effect of CNVs on structural and functional brain endophenotypes. Alterations overlap with those found in idiopathic psychiatric conditions but effect sizes are twofold to fivefold larger. Here we review new CNV-associated structural and functional brain alterations and outline the future of neuroimaging genomics research, with particular emphasis on developing new resources for the study of high-risk CNVs and rare genomic variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gde.2021.03.002DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205978PMC
June 2021

1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans.

Transl Psychiatry 2021 03 22;11(1):182. Epub 2021 Mar 22.

Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.

Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriers-the latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-021-01213-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985307PMC
March 2021

Dissecting autism and schizophrenia through neuroimaging genomics.

Brain 2021 08;144(7):1943-1957

Sainte Justine Research Center, University of Montréal, Montréal, Québec H3T 1C5, Canada.

Neuroimaging genomic studies of autism spectrum disorder and schizophrenia have mainly adopted a 'top-down' approach, beginning with the behavioural diagnosis, and moving down to intermediate brain phenotypes and underlying genetic factors. Advances in imaging and genomics have been successfully applied to increasingly large case-control studies. As opposed to diagnostic-first approaches, the bottom-up strategy begins at the level of molecular factors enabling the study of mechanisms related to biological risk, irrespective of diagnoses or clinical manifestations. The latter strategy has emerged from questions raised by top-down studies: why are mutations and brain phenotypes over-represented in individuals with a psychiatric diagnosis? Are they related to core symptoms of the disease or to comorbidities? Why are mutations and brain phenotypes associated with several psychiatric diagnoses? Do they impact a single dimension contributing to all diagnoses? In this review, we aimed at summarizing imaging genomic findings in autism and schizophrenia as well as neuropsychiatric variants associated with these conditions. Top-down studies of autism and schizophrenia identified patterns of neuroimaging alterations with small effect-sizes and an extreme polygenic architecture. Genomic variants and neuroimaging patterns are shared across diagnostic categories suggesting pleiotropic mechanisms at the molecular and brain network levels. Although the field is gaining traction; characterizing increasingly reproducible results, it is unlikely that top-down approaches alone will be able to disentangle mechanisms involved in autism or schizophrenia. In stark contrast with top-down approaches, bottom-up studies showed that the effect-sizes of high-risk neuropsychiatric mutations are equally large for neuroimaging and behavioural traits. Low specificity has been perplexing with studies showing that broad classes of genomic variants affect a similar range of behavioural and cognitive dimensions, which may be consistent with the highly polygenic architecture of psychiatric conditions. The surprisingly discordant effect sizes observed between genetic and diagnostic first approaches underscore the necessity to decompose the heterogeneity hindering case-control studies in idiopathic conditions. We propose a systematic investigation across a broad spectrum of neuropsychiatric variants to identify putative latent dimensions underlying idiopathic conditions. Gene expression data on temporal, spatial and cell type organization in the brain have also considerable potential for parsing the mechanisms contributing to these dimensions' phenotypes. While large neuroimaging genomic datasets are now available in unselected populations, there is an urgent need for data on individuals with a range of psychiatric symptoms and high-risk genomic variants. Such efforts together with more standardized methods will improve mechanistically informed predictive modelling for diagnosis and clinical outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awab096DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370419PMC
August 2021

Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs.

Hum Brain Mapp 2021 Feb 21. Epub 2021 Feb 21.

Center for Neuroimaging, Genetics and Genomics, School of Psychology, NUI Galway, Galway, Ireland.

The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25354DOI Listing
February 2021

The Open Brain Consent: Informing research participants and obtaining consent to share brain imaging data.

Hum Brain Mapp 2021 05 1;42(7):1945-1951. Epub 2021 Feb 1.

University of Verona, Verona, Italy.

Having the means to share research data openly is essential to modern science. For human research, a key aspect in this endeavor is obtaining consent from participants, not just to take part in a study, which is a basic ethical principle, but also to share their data with the scientific community. To ensure that the participants' privacy is respected, national and/or supranational regulations and laws are in place. It is, however, not always clear to researchers what the implications of those are, nor how to comply with them. The Open Brain Consent (https://open-brain-consent.readthedocs.io) is an international initiative that aims to provide researchers in the brain imaging community with information about data sharing options and tools. We present here a short history of this project and its latest developments, and share pointers to consent forms, including a template consent form that is compliant with the EU general data protection regulation. We also share pointers to an associated data user agreement that is not only useful in the EU context, but also for any researchers dealing with personal (clinical) data elsewhere.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25351DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046140PMC
May 2021

Mutations associated with neuropsychiatric conditions delineate functional brain connectivity dimensions contributing to autism and schizophrenia.

Nat Commun 2020 10 19;11(1):5272. Epub 2020 Oct 19.

Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.

16p11.2 and 22q11.2 Copy Number Variants (CNVs) confer high risk for Autism Spectrum Disorder (ASD), schizophrenia (SZ), and Attention-Deficit-Hyperactivity-Disorder (ADHD), but their impact on functional connectivity (FC) remains unclear. Here we report an analysis of resting-state FC using magnetic resonance imaging data from 101 CNV carriers, 755 individuals with idiopathic ASD, SZ, or ADHD and 1,072 controls. We characterize CNV FC-signatures and use them to identify dimensions contributing to complex idiopathic conditions. CNVs have large mirror effects on FC at the global and regional level. Thalamus, somatomotor, and posterior insula regions play a critical role in dysconnectivity shared across deletions, duplications, idiopathic ASD, SZ but not ADHD. Individuals with higher similarity to deletion FC-signatures exhibit worse cognitive and behavioral symptoms. Deletion similarities identified at the connectivity level could be related to the redundant associations observed genome-wide between gene expression spatial patterns and FC-signatures. Results may explain why many CNVs affect a similar range of neuropsychiatric symptoms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-18997-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573583PMC
October 2020

The genetics-BIDS extension: Easing the search for genetic data associated with human brain imaging.

Gigascience 2020 10;9(10)

Centre for Clinical Brain Sciences & Edinburgh Imaging, University of Edinburgh, 49 Little France Crescent, Edinburgh BioQuarter EH16 4SB, UK.

Metadata are what makes databases searchable. Without them, researchers would have difficulty finding data with features they are interested in. Brain imaging genetics is at the intersection of two disciplines, each with dedicated dictionaries and ontologies facilitating data search and analysis. Here, we present the genetics Brain Imaging Data Structure extension, consisting of metadata files for human brain imaging data to which they are linked, and describe succinctly the genomic and transcriptomic data associated with them, which may be in different databases. This extension will facilitate identifying micro-scale molecular features that are linked to macro-scale imaging repositories, facilitating data aggregation across studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/gigascience/giaa104DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568436PMC
October 2020

Effect Sizes of Deletions and Duplications on Autism Risk Across the Genome.

Am J Psychiatry 2021 01 11;178(1):87-98. Epub 2020 Sep 11.

Université de Montréal, Montreal (Douard, Zeribi, Schramm, Tamer, Loum, Nowak, Lord, Moreau, Huguet, Jacquemont); UHC Sainte-Justine Research Center, Montreal (Douard, Zeribi, Schramm, Tamer, Loum, Nowak, Saci, Lord, Rodríguez-Herreros, Jean-Louis, Moreau, Huguet, Jacquemont); Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal (Schramm, Greenwood); Sensory-Motor Laboratory, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland (Rodríguez-Herreros); Department of Forensic and Neurodevelopmental Sciences (Loth) and Center for Population Neuroscience and Stratified Medicine (Schumann), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Hospital for Sick Children and Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto (Pausova); Departments of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal (Elsabbagh); Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, and Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia (Almasy); Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston (Glahn); Human Genetics and Cognitive Functions, Institut Pasteur, Université de Paris, Paris (Bourgeron); Département de Sciences de la Décision, HEC Montreal, Montreal (Labbe); Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto (Paus); Departments of Psychology and Psychiatry, University of Toronto, Toronto (Paus); Centre de Recherche de CIUSSS-NIM, Montreal (Mottron); Département de Psychiatrie, Université de Montréal, Montreal (Mottron); Department of Epidemiology, Biostatistics, and Occupational Health, Gerald Bronfman Department of Oncology, and Department of Human Genetics, McGill University, Montreal (Greenwood).

Objective: Deleterious copy number variants (CNVs) are identified in up to 20% of individuals with autism. However, levels of autism risk conferred by most rare CNVs remain unknown. The authors recently developed statistical models to estimate the effect size on IQ of all CNVs, including undocumented ones. In this study, the authors extended this model to autism susceptibility.

Methods: The authors identified CNVs in two autism populations (Simons Simplex Collection and MSSNG) and two unselected populations (IMAGEN and Saguenay Youth Study). Statistical models were used to test nine quantitative variables associated with genes encompassed in CNVs to explain their effects on IQ, autism susceptibility, and behavioral domains.

Results: The "probability of being loss-of-function intolerant" (pLI) best explains the effect of CNVs on IQ and autism risk. Deleting 1 point of pLI decreases IQ by 2.6 points in autism and unselected populations. The effect of duplications on IQ is threefold smaller. Autism susceptibility increases when deleting or duplicating any point of pLI. This is true for individuals with high or low IQ and after removing de novo and known recurrent neuropsychiatric CNVs. When CNV effects on IQ are accounted for, autism susceptibility remains mostly unchanged for duplications but decreases for deletions. Model estimates for autism risk overlap with previously published observations. Deletions and duplications differentially affect social communication, behavior, and phonological memory, whereas both equally affect motor skills.

Conclusions: Autism risk conferred by duplications is less influenced by IQ compared with deletions. The model applied in this study, trained on CNVs encompassing >4,500 genes, suggests highly polygenic properties of gene dosage with respect to autism risk and IQ loss. These models will help to interpret CNVs identified in the clinic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1176/appi.ajp.2020.19080834DOI Listing
January 2021

Autonomic regulation of the heart and arrhythmogenesis in trained breath-hold divers.

Eur J Sport Sci 2021 Mar 26;21(3):439-449. Epub 2020 Apr 26.

Faculty of Sport Sciences, CETAPS laboratory, EA 3832, Normandy University, France.

Breath-hold divers are known to develop cardiac autonomic changes and brady-arrthymias during prolonged breath-holding (BH). The effects of BH-induced hypoxemia were investigated upon both cardiac autonomic status and arrhythmogenesis by comparing breath-hold divers (BHDs) to non-divers (NDs). Eighteen participants (9 BHDs, 9 NDs) performed a maximal voluntary BH with face immersion. BHDs were asked to perform an additional BH at water surface to increase the degree of hypoxemia. Beat-to-beat changes in heart rate (HR), short-term fractal scaling exponent (DFAα1), the number of arrhythmic events [premature ventricular contractions (PVCs), premature atrial contractions (PACs)] and peripheral oxygen saturation (SpO) were recorded during and immediately following BH. The corrected QT-intervals (QTc) were analyzed pre- and post-acute BH. A regression-based model was used to split BH into a normoxic (NX) and a hypoxemic phase (HX). During the HX phase of BH, BHDs showed a progressive decrease in DFAα1 during BH with face immersion ( < 0.01) and BH with whole-body immersion ( < 0.01) whereas NDs did not ( > 0.05). In addition, BHDs had more arrhythmic events during the HX of BH with whole-body immersion when compared to the corresponding NX phase (5.9 ± 6.7 vs 0.4 ± 1.3;  < 0.05; respectively). The number of PVCs was negatively correlated with SpO during BH with whole-body immersion (= -0.72;  < 0.05). The hypoxemic stage of voluntary BH is concomitant with significant cardiac autonomic changes toward a synergistic sympathetic and parasympathetic stimulation. Co-activation led ultimately to increased bradycardic response and cardiac electrophysiological disturbances.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/17461391.2020.1749313DOI Listing
March 2021

Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition.

JAMA Psychiatry 2020 04;77(4):420-430

Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands.

Importance: Recurrent microdeletions and duplications in the genomic region 15q11.2 between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders. These structural variants are present in 0.5% to 1.0% of the population, making 15q11.2 BP1-BP2 the site of the most prevalent known pathogenic copy number variation (CNV). It is unknown to what extent this CNV influences brain structure and affects cognitive abilities.

Objective: To determine the association of the 15q11.2 BP1-BP2 deletion and duplication CNVs with cortical and subcortical brain morphology and cognitive task performance.

Design, Setting, And Participants: In this genetic association study, T1-weighted brain magnetic resonance imaging were combined with genetic data from the ENIGMA-CNV consortium and the UK Biobank, with a replication cohort from Iceland. In total, 203 deletion carriers, 45 247 noncarriers, and 306 duplication carriers were included. Data were collected from August 2015 to April 2019, and data were analyzed from September 2018 to September 2019.

Main Outcomes And Measures: The associations of the CNV with global and regional measures of surface area and cortical thickness as well as subcortical volumes were investigated, correcting for age, age2, sex, scanner, and intracranial volume. Additionally, measures of cognitive ability were analyzed in the full UK Biobank cohort.

Results: Of 45 756 included individuals, the mean (SD) age was 55.8 (18.3) years, and 23 754 (51.9%) were female. Compared with noncarriers, deletion carriers had a lower surface area (Cohen d = -0.41; SE, 0.08; P = 4.9 × 10-8), thicker cortex (Cohen d = 0.36; SE, 0.07; P = 1.3 × 10-7), and a smaller nucleus accumbens (Cohen d = -0.27; SE, 0.07; P = 7.3 × 10-5). There was also a significant negative dose response on cortical thickness (β = -0.24; SE, 0.05; P = 6.8 × 10-7). Regional cortical analyses showed a localization of the effects to the frontal, cingulate, and parietal lobes. Further, cognitive ability was lower for deletion carriers compared with noncarriers on 5 of 7 tasks.

Conclusions And Relevance: These findings, from the largest CNV neuroimaging study to date, provide evidence that 15q11.2 BP1-BP2 structural variation is associated with brain morphology and cognition, with deletion carriers being particularly affected. The pattern of results fits with known molecular functions of genes in the 15q11.2 BP1-BP2 region and suggests involvement of these genes in neuronal plasticity. These neurobiological effects likely contribute to the association of this CNV with neurodevelopmental disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamapsychiatry.2019.3779DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822096PMC
April 2020

Developmental trajectories of neuroanatomical alterations associated with the 16p11.2 Copy Number Variations.

Neuroimage 2019 12 5;203:116155. Epub 2019 Sep 5.

Department of Biological and Biomedical Engineering, Montreal Neurological Institute, Montreal, Quebec, Canada.

Most of human genome is present in two copies (maternal and paternal). However, segments of the genome can be deleted or duplicated, and many of these genomic variations (known as Copy Number Variants) are associated with psychiatric disorders. 16p11.2 copy number variants (breakpoint 4-5) confer high risk for neurodevelopmental disorders and are associated with structural brain alterations of large effect-size. Methods used in previous studies were unable to investigate the onset of these alterations and whether they evolve with age. In this study, we aim at characterizing age-related effects of 16p11.2 copy number variants by analyzing a group with a broad age range including younger individuals. A large normative developmental dataset was used to accurately adjust for effects of age. We normalized volumes of segmented brain regions as well as volumes of each voxel defined by tensor-based morphometry. Results show that the total intracranial volumes, the global gray and white matter volumes are respectively higher and lower in deletion and duplication carriers compared to control subjects at 4.5 years of age. These differences remain stable through childhood, adolescence and adulthood until 23 years of age (range: 0.5 to 1.0 Z-score). Voxel-based results are consistent with previous findings in 16p11.2 copy number variant carriers, including increased volume in the calcarine cortex and insula in deletions, compared to controls, with an inverse effect in duplication carriers (1.0 Z-score). All large effect-size voxel-based differences are present at 4.5 years and seem to remain stable until the age of 23. Our results highlight the stability of a neuroimaging endophenotype over 2 decades during which neurodevelopmental symptoms evolve at a rapid pace.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2019.116155DOI Listing
December 2019

Estimating the effect size of the 15Q11.2 BP1-BP2 deletion and its contribution to neurodevelopmental symptoms: recommendations for practice.

J Med Genet 2019 10 26;56(10):701-710. Epub 2019 Aug 26.

Department of Pediatrics, University of Montreal, Montreal, Québec, Canada

Background: The 15q11.2 deletion is frequently identified in the neurodevelopmental clinic. Case-control studies have associated the 15q11.2 deletion with neurodevelopmental disorders, and clinical case series have attempted to delineate a microdeletion syndrome with considerable phenotypic variability. The literature on this deletion is extensive and confusing, which is a challenge for genetic counselling. The aim of this study was to estimate the effect size of the 15q11.2 deletion and quantify its contribution to neurodevelopmental disorders.

Methods: We performed meta-analyses on new and previously published case-control studies and used statistical models trained in unselected populations with cognitive assessments. We used new (n=241) and previously published (n=150) data from a clinically referred group of deletion carriers. 15q11.2 duplications (new n=179 and previously published n=35) were used as a neutral control variant.

Results: The deletion decreases IQ by 4.3 points. The estimated ORs and respective frequencies in deletion carriers for intellectual disabilities, schizophrenia and epilepsy are 1.7 (3.4%), 1.5 (2%) and 3.1 (2.1%), respectively. There is no increased risk for heart malformations and autism. In the clinically referred group, the frequency and nature of symptoms in deletions are not different from those observed in carriers of the 15q11.2 duplication suggesting that most of the reported symptoms are due to ascertainment bias.

Conclusions: We recommend that the deletion should be classified as 'pathogenic of mild effect size'. Since it explains only a small proportion of the phenotypic variance in carriers, it is not worth discussing in the developmental clinic or in a prenatal setting.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2018-105879DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6817694PMC
October 2019

Correction: Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia.

Mol Psychiatry 2020 Mar;25(3):692-695

Department of Psychiatry and Mental Health, Anzio Road, 7925, Cape Town, South Africa.

Prior to and following the publication of this article the authors noted that the complete list of authors was not included in the main article and was only present in Supplementary Table 1. The author list in the original article has now been updated to include all authors, and Supplementary Table 1 has been removed. All other supplementary files have now been updated accordingly. Furthermore, in Table 1 of this Article, the replication cohort for the row Close relative in data set, n (%) was incorrect. All values have now been corrected to 0(0%). The publishers would like to apologise for this error and the inconvenience it may have caused.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-019-0358-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7608381PMC
March 2020

Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia.

Mol Psychiatry 2020 03 3;25(3):584-602. Epub 2018 Oct 3.

Department of Psychiatry and Mental Health, Anzio Road, 7925, Cape Town, South Africa.

Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = -0.71 to -1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = -0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10, 1.7 × 10, 3.5 × 10 and 1.0 × 10, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-018-0118-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7042770PMC
March 2020

Quantifying the Effects of 16p11.2 Copy Number Variants on Brain Structure: A Multisite Genetic-First Study.

Biol Psychiatry 2018 08 27;84(4):253-264. Epub 2018 Mar 27.

Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; CHU Sainte-Justine Research Center, Université de Montréal, Montréal, Quebec, Canada. Electronic address:

Background: 16p11.2 breakpoint 4 to 5 copy number variants (CNVs) increase the risk for developing autism spectrum disorder, schizophrenia, and language and cognitive impairment. In this multisite study, we aimed to quantify the effect of 16p11.2 CNVs on brain structure.

Methods: Using voxel- and surface-based brain morphometric methods, we analyzed structural magnetic resonance imaging collected at seven sites from 78 individuals with a deletion, 71 individuals with a duplication, and 212 individuals without a CNV.

Results: Beyond the 16p11.2-related mirror effect on global brain morphometry, we observe regional mirror differences in the insula (deletion > control > duplication). Other regions are preferentially affected by either the deletion or the duplication: the calcarine cortex and transverse temporal gyrus (deletion > control; Cohen's d > 1), the superior and middle temporal gyri (deletion < control; Cohen's d < -1), and the caudate and hippocampus (control > duplication; -0.5 > Cohen's d > -1). Measures of cognition, language, and social responsiveness and the presence of psychiatric diagnoses do not influence these results.

Conclusions: The global and regional effects on brain morphometry due to 16p11.2 CNVs generalize across site, computational method, age, and sex. Effect sizes on neuroimaging and cognitive traits are comparable. Findings partially overlap with results of meta-analyses performed across psychiatric disorders. However, the lack of correlation between morphometric and clinical measures suggests that CNV-associated brain changes contribute to clinical manifestations but require additional factors for the development of the disorder. These findings highlight the power of genetic risk factors as a complement to studying groups defined by behavioral criteria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsych.2018.02.1176DOI Listing
August 2018
-->