Publications by authors named "Claire Lecocq"

4 Publications

  • Page 1 of 1

Expanding the clinical spectrum of STIP1 homology and U-box containing protein 1-associated ataxia.

J Neurol 2021 Jan 8. Epub 2021 Jan 8.

Service de Génétique Médicale, Hôpitaux de Brabois, CHRU de Nancy, Rue du Morvan, 54500, Vandoeuvre-lès-Nancy, France.

Background: STUB1 has been first associated with autosomal recessive (SCAR16, MIM# 615768) and later with dominant forms of ataxia (SCA48, MIM# 618093). Pathogenic variations in STUB1 are now considered a frequent cause of cerebellar ataxia.

Objective: We aimed to improve the clinical, radiological, and molecular delineation of SCAR16 and SCA48.

Methods: Retrospective collection of patients with SCAR16 or SCA48 diagnosed in three French genetic centers (Montpellier, Strasbourg and Nancy).

Results: Here, we report four SCAR16 and nine SCA48 patients from two SCAR16 and five SCA48 unrelated French families. All presented with slowly progressive cerebellar ataxia. Additional findings included cognitive decline, dystonia, parkinsonism and swallowing difficulties. The age at onset was highly variable, ranging from 14 to 76 years. Brain MRI showed marked cerebellar atrophy in all patients. Phenotypic findings associated with STUB1 pathogenic variations cover a broad spectrum, ranging from isolated slowly progressive ataxia to severe encephalopathy, and include extrapyramidal features. We described five new pathogenic variations, two previously reported pathogenic variations, and two rare variants of unknown significance in association with STUB1-related disorders. We also report the first pathogenic variation associated with both dominant and recessive forms of inheritance (SCAR16 and SCA48).

Conclusion: Even though differences are observed between the recessive and dominant forms, it appears that a continuum exists between these two entities. While adding new symptoms associated with STUB1 pathogenic variations, we insist on the difficulty of genetic counselling in STUB1-related pathologies. Finally, we underscore the usefulness of DAT-scan as an additional clue for diagnosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00415-020-10348-xDOI Listing
January 2021

Neurologic and neuroimaging findings in patients with COVID-19: A retrospective multicenter study.

Neurology 2020 09 17;95(13):e1868-e1882. Epub 2020 Jul 17.

From the Hôpitaux Universitaires de Strasbourg (S.K., F.L., S.B., F.-D.A., T.W.), Service d'imagerie 2, Hôpital de Hautepierre; Engineering Science, Computer Science and Imaging Laboratory (S.K., N.M.), UMR 7357, University of Strasbourg-CNRS; Service de Neurologie (M. Anheim), Hôpitaux Universitaires de Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (M. Anheim), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch; Fédération de Médecine Translationnelle de Strasbourg (M. Anheim), Université de Strasbourg; Hôpitaux universitaires de Strasbourg (H.M., F.M., J.H.), Service de Médecine Intensive Réanimation, Nouvel Hôpital Civil; INSERM (French National Institute of Health and Medical Research) (H.M., F.M.), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg; Médecine Intensive-Réanimation (M.S., F.S.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Service de Neuroradiologie (H.O., F.B., J.M.), Hôpitaux Civils de Colmar; Service d'Imagerie (A. Khalil, A.G.), Unité de Neuroradiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat Claude Bernard; Université Paris Diderot (A. Khalil), Paris; Service de Neurologie (S. Carré, C.L.), Centre Hospitalier de Haguenau; Service de Radiologie (M. Alleg), Centre Hospitalier de Haguenau; Service de Neuroradiologie, (E.S., R.A., F.Z.) Hôpital Central, CHU de Nancy; CHIC Unisanté (L.J., P.N., Y.T.M.), Hôpital Marie Madeleine, Forbach; Neuroimaging Department (G.H., J. Benzakoun, C.O., G. Boulouis, M.E.-G., B.K.), GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Université de Paris, INSERM U1266, F-75014; CHU Rennes (J.-C.F., B.C.-N.), Department of Neuroradiology; CHU Rennes (A.M.), Medical Intensive Care Unit; Department of Neuroradiology (P.-O.C., F.R., P.T.), University Hospital of Dijon, Hôpital François Mitterrand; Service de Radiologie (C.B.), CHU de Saint-Etienne; Service de Réanimation (X.F.), CH de Roanne; Service de Neuroradiologie (G.F., S.S.), CHU de Limoges; Radiology Department (I.d.B., G. Bornet), Hôpital Privé d'Antony; Department of Diagnostic and Interventional Neuroradiology (H.D.), University Hospital, Nantes; Neuroradiology Department (J. Berge), CHU de Bordeaux; Service de Neuroradiologie (A. Kazémi), CHU de Lille; Assistance Publique Hôpitaux de Paris (N.P.), Service de Neuroradiologie, Hôpital Pitié-Salpêtrière; Sorbonne Université (N.P.), Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013; Service de Neuroradiologie Diagnostique (A.L.), Foundation A. Rothschild Hospital, Paris; EA CHIMERE 7516 (J.-M.C.), Université de Picardie Jules Verne; Service de NeuroRadiologie, pôle Imagerie Médicale, Centre Hospitalo-Universitaire d'Amiens; Hôpitaux Universitaires de Strasbourg (P.-E.Z., M.M.), UCIEC, Pôle d'Imagerie, Strasbourg; Observatoire Français de la Sclérose en Plaques (J.-C.B.), Lyon; Nephrology and Transplantation Department (S. Caillard), Hôpitaux Universitaires de Strasbourg; Inserm UMR S1109 (S. Caillard), LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg; Hôpitaux Universitaires de Strasbourg (O.C., P.M.M.), Service d'Anesthésie-Réanimation, Nouvel Hôpital Civil; Hôpitaux Universitaires de Strasbourg (S.F.-K.), Laboratoire de Virologie Médicale; Radiology Department (M.O.), Nouvel Hôpital Civil, Strasbourg University Hospital; CHU de Strasbourg (N.M.), Service de Santé Publique, GMRC, F-67091 Strasbourg; Immuno-Rhumatologie Moléculaire (S.F.-K., J.H.), INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg; MRI Center (F.C.), Centre Hospitalier Lyon Sud, Hospices Civils de Lyon; and Université Lyon 1 (F.C.), CREATIS-LRMN, CNRS/UMR/5220-INSERM U630, Villeurbanne, France.

Objective: To describe neuroimaging findings and to report the epidemiologic and clinical characteristics of patients with coronavirus disease 2019 (COVID-19) with neurologic manifestations.

Methods: In this retrospective multicenter study (11 hospitals), we included 64 patients with confirmed COVID-19 with neurologic manifestations who underwent a brain MRI.

Results: The cohort included 43 men (67%) and 21 women (33%); their median age was 66 (range 20-92) years. Thirty-six (56%) brain MRIs were considered abnormal, possibly related to severe acute respiratory syndrome coronavirus. Ischemic strokes (27%), leptomeningeal enhancement (17%), and encephalitis (13%) were the most frequent neuroimaging findings. Confusion (53%) was the most common neurologic manifestation, followed by impaired consciousness (39%), presence of clinical signs of corticospinal tract involvement (31%), agitation (31%), and headache (16%). The profile of patients experiencing ischemic stroke was different from that of other patients with abnormal brain imaging: the former less frequently had acute respiratory distress syndrome ( = 0.006) and more frequently had corticospinal tract signs ( = 0.02). Patients with encephalitis were younger ( = 0.007), whereas agitation was more frequent for patients with leptomeningeal enhancement ( = 0.009).

Conclusions: Patients with COVID-19 may develop a wide range of neurologic symptoms, which can be associated with severe and fatal complications such as ischemic stroke or encephalitis. In terms of meningoencephalitis involvement, even if a direct effect of the virus cannot be excluded, the pathophysiology seems to involve an immune or inflammatory process given the presence of signs of inflammation in both CSF and neuroimaging but the lack of virus in CSF.

Clinicaltrialsgov Identifier: NCT04368390.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000010112DOI Listing
September 2020

Brain MRI Findings in Severe COVID-19: A Retrospective Observational Study.

Radiology 2020 11 16;297(2):E242-E251. Epub 2020 Jun 16.

From the Hôpitaux Universitaires de Strasbourg, Service d'Imagerie 2, Hôpital de Hautepierre, Strasbourg, France (S.K.).

Background Brain MRI parenchymal signal abnormalities have been associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Purpose To describe the neuroimaging findings (excluding ischemic infarcts) in patients with severe coronavirus disease 2019 (COVID-19) infection. Materials and Methods This was a retrospective study of patients evaluated from March 23, 2020, to April 27, 2020, at 16 hospitals. Inclusion criteria were () positive nasopharyngeal or lower respiratory tract reverse transcriptase polymerase chain reaction assays, () severe COVID-19 infection defined as a requirement for hospitalization and oxygen therapy, () neurologic manifestations, and () abnormal brain MRI findings. Exclusion criteria were patients with missing or noncontributory data regarding brain MRI or brain MRI showing ischemic infarcts, cerebral venous thrombosis, or chronic lesions unrelated to the current event. Categorical data were compared using the Fisher exact test. Quantitative data were compared using the Student test or Wilcoxon test. < .05 represented a significant difference. Results Thirty men (81%) and seven women (19%) met the inclusion criteria, with a mean age of 61 years ± 12 (standard deviation) (age range, 8-78 years). The most common neurologic manifestations were alteration of consciousness (27 of 37, 73%), abnormal wakefulness when sedation was stopped (15 of 37, 41%), confusion (12 of 37, 32%), and agitation (seven of 37, 19%). The most frequent MRI findings were signal abnormalities located in the medial temporal lobe in 16 of 37 patients (43%; 95% confidence interval [CI]: 27%, 59%), nonconfluent multifocal white matter hyperintense lesions seen with fluid-attenuated inversion recovery and diffusion-weighted sequences with variable enhancement, with associated hemorrhagic lesions in 11 of 37 patients (30%; 95% CI: 15%, 45%), and extensive and isolated white matter microhemorrhages in nine of 37 patients (24%; 95% CI: 10%, 38%). A majority of patients (20 of 37, 54%) had intracerebral hemorrhagic lesions with a more severe clinical presentation and a higher admission rate in intensive care units (20 of 20 patients [100%] vs 12 of 17 patients without hemorrhage [71%], = .01) and development of the acute respiratory distress syndrome (20 of 20 patients [100%] vs 11 of 17 patients [65%], = .005). Only one patient had SARS-CoV-2 RNA in the cerebrospinal fluid. Conclusion Patients with severe coronavirus disease 2019 and without ischemic infarcts had a wide range of neurologic manifestations that were associated with abnormal brain MRI scans. Eight distinctive neuroradiologic patterns were described. © RSNA, 2020.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.2020202222DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7301613PMC
November 2020

Delayed-onset Friedreich's ataxia revisited.

Mov Disord 2016 Jan 21;31(1):62-9. Epub 2015 Sep 21.

Département de Neurologie, Hôpital de Hautepierre, CHU de Strasbourg, France Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France; and Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.

Background: Friedreich's ataxia usually occurs before the age of 25. Rare variants have been described, such as late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia, occurring after 25 and 40 years, respectively. We describe the clinical, functional, and molecular findings from a large series of late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia and compare them with typical-onset Friedreich's ataxia.

Methods: Phenotypic and genotypic comparison of 44 late-onset Friedreich's ataxia, 30 very late-onset Friedreich's ataxia, and 180 typical Friedreich's ataxia was undertaken.

Results: Delayed-onset Friedreich's ataxia (late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia) had less frequently dysarthria, abolished tendon reflexes, extensor plantar reflexes, weakness, amyotrophy, ganglionopathy, cerebellar atrophy, scoliosis, and cardiomyopathy than typical-onset Friedreich's ataxia, along with less severe functional disability and shorter GAA expansion on the smaller allele (P < 0.001). Delayed-onset Friedreich's ataxia had lower scale for the assessment and rating of ataxia and spinocerebellar degeneration functional scores and longer disease duration before wheelchair confinement (P < 0.001). Both GAA expansions were negatively correlated to age at disease onset (P < 0.001), but the smaller GAA expansion accounted for 62.9% of age at onset variation and the larger GAA expansion for 15.6%. In this comparative study of late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia, no differences between these phenotypes were demonstrated.

Conclusion: Typical- and delayed-onset Friedreich's ataxia are different and Friedreich's ataxia is heterogeneous. Late-onset Friedreich's ataxia and very-late-onset Friedreich's ataxia appear to belong to the same clinical and molecular continuum and should be considered together as "delayed-onset Friedreich's ataxia." As the most frequently inherited ataxia, Friedreich's ataxia should be considered facing compatible pictures, including atypical phenotypes (spastic ataxia, retained reflexes, lack of dysarthria, and lack of extraneurological signs), delayed disease onset (even after 60 years of age), and/or slow disease progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mds.26382DOI Listing
January 2016