Publications by authors named "Cibele Hummel do Amaral"

4 Publications

  • Page 1 of 1

Spectro-temporal analysis of the Paraopeba River water after the tailings dam burst of the Córrego do Feijão mine, in Brumadinho, Brazil.

Environ Monit Assess 2021 Jun 21;193(7):435. Epub 2021 Jun 21.

Department of Forest Engineering, Federal University of Viçosa (UFV), Vicosa, MG, Brazil.

Remote sensing is an important tool for environmental assessment, especially in the event of disasters such as the tailings dam burst at the Córrego do Feijão mine, located in the Paraopeba River basin, Brazil. Thus, this study aimed to carry out a spectro-temporal analysis of the Paraopeba River water given the dam burst, using multispectral images from the MSI sensor onboard Sentinel-2 satellites. For this analysis, sections along the river were defined by the creation of buffers, with 10-km intervals each, starting from the origin of the burst. For each section, the average visible to near-infrared (NIR) reflectance values per band and the Normalized Difference Water Index (NDWI) were obtained. We found that the red edge and NIR bands (B5, B6, B7, B8, and B8A) showed higher reflectance values when compared to the visible bands in the months immediately after the disaster, especially in the first 20 km. In these months, negative NDWI values were also found for almost all sections downstream, demonstrating the large volume of mining tailings in the Paraopeba River. The seasonal variation of the observed values indicates the resuspension of the material deposited at the river bottom with the beginning of the rainy season. Finally, we highlight the usefulness of the MSI/Sentinel-2 red edge and NIR bands for further studies on the monitoring from space of water bodies subjected to contamination by large amounts of mud with iron ore tailings and contaminants, as occurred in the state of Minas Gerais, southeastern Brazil.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-021-09218-4DOI Listing
June 2021

Impact of drought associated with high temperatures on Coffea canephora plantations: a case study in Espírito Santo State, Brazil.

Sci Rep 2020 11 12;10(1):19719. Epub 2020 Nov 12.

Biology Department, Federal University of Espírito Santo (UFES), Alegre, 29500-000, Brazil.

Droughts are major natural disasters that affect many parts of the world all years and recently affected one of the major conilon coffee-producing regions of the world in state of Espírito Santo, which caused a huge crisis in the sector. Therefore, the objective of this study was to conduct an analysis with technical-scientific basis of the real impact of drought associated with high temperatures and irradiances on the conilon coffee (Coffea canephora Pierre ex Froehner) plantations located in the north, northwest, and northeast regions of the state of Espírito Santo, Brazil. Data from 2010 to 2016 of rainfall, air temperature, production, yield, planted area and surface remote sensing were obtained from different sources, statistically analyzed, and correlated. The 2015/2016 season was the most affected by the drought and high temperatures (mean annual above 26 °C) because, in addition to the adverse weather conditions, coffee plants were already damaged by the climatic conditions of the previous season. The increase in air temperature has higher impact (negative) on production than the decrease in annual precipitation. The average annual air temperatures in the two harvest seasons that stood out for the lowest yields (i.e. 2012/2013 and 2015/2016) were approximately 1 °C higher than in the previous seasons. In addition, in the 2015/2016 season, the average annual air temperature was the highest in the entire series. The spatial and temporal distribution of Enhanced Vegetation Index values enabled the detection and perception of droughts in the conilon coffee-producing regions of Espírito Santo. The rainfall volume accumulated in the periods from September to December and from April to August are the ones that most affect coffee yield. The conilon coffee plantations in these regions are susceptible to new climate extremes, as they continue to be managed under irrigation and full sun. The adoption of agroforestry systems and construction of small reservoirs can be useful to alleviate these climate effects, reducing the risk of coffee production losses and contributing to the sustainability of crops in Espírito Santo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-76713-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665182PMC
November 2020

Leaf development stages and ontogenetic changes in passionfruit (Passiflora edulis Sims.) are detected by narrowband spectral signal.

J Photochem Photobiol B 2020 Aug 10;209:111931. Epub 2020 Jun 10.

Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil. Electronic address:

During shoot development, leaves undergo various ontogenetic changes, including variation in size, shape, and geometry. Passiflora edulis (passionfruit) is a heteroblastic species, which means that it experiences conspicuous changes throughout development, enabling a morphological distinction between the juvenile and adult vegetative phases. Quantification of heteroblasty requires a practical, inexpensive, reliable, and non-destructive method, such as remote sensing. Moreover, relationships among ontogenetic changes and spectral signal at leaf level can be scaled up to support precision agriculture in passion fruit crops. In the present study, we used laboratory spectroscopic measurements (400-2500 nm) and narrowband vegetation indexes (or hyperspectral vegetation indexes - HVIs) to evaluate ontogenetic changes related to development and aging in P. edulis leaves. We also assessed leaf pigment concentration to further support the application of biochemical-related narrowband indexes. We report that 30-d-old leaves can be discriminated into developmental stages through their spectral signals. MSI (Moisture Stress Index) and NDVI (Normalized Difference Vegetation Index ρ750) contribute most to the variation of age (15 to 30-d-old leaves) and developmental stage (phytomer positions along the plant axis) in passionfruit leaves. PRI (Photochemical Reflectance Index) played an important role in detecting age and development alterations, including heteroblasty. A biochemical and spectral comparison of pigments revealed that spectroscopy offered potential for diagnosing phenology in P. edulis, as some narrowband indexes correlated strongly with chlorophylls and carotenoids content. Narrowband vegetation indexes are found to be a suitable tool for monitoring passionfruit crops.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2020.111931DOI Listing
August 2020

Wildfires as a major challenge for natural regeneration in Atlantic Forest.

Sci Total Environ 2019 Feb 5;650(Pt 1):809-821. Epub 2018 Sep 5.

Department of Environmental Dynamics, National Institute of Amazonian Research (INPA), Manaus CEP 69067-375, Amazonas, Brazil.

The natural regeneration management is a good strategy of ecological restoration of the Atlantic Forest, one of the most devastated biomes on the planet. However, the frequent occurrence of wildfires is one of the challenges to the success of this method. The objective of this study was to evaluate the effects of wildfires on forest dynamics in Atlantic Forest. The studied area was explored during the coffee cycle when plantations replaced primary forests. We used remote sensing data to analyze the forest dynamics over a period of 50 years (1966-2016). We used the INPE burn database to find the occurrence of hot spots from 1998 to 2016. During this period, we selected the years most affected by the fires for the identification of fire scars using the Normalized Burn Ratio spectral index. From this set of information, we used the methodology of weights of evidence to relate forest dynamics and wildfire events with biophysical and anthropic variables. The results showed that in 1966 the forest area accounted for 8.01% of the land cover, and in 2016 this number rose to 18.55% due to the spontaneous natural regeneration process. The regenerating areas were mainly related to the proximity of the remaining fragments and the portions of the landscape receiving the least amount of global solar radiation. The proximity to urban areas, roads and highways, damaged regeneration and favored both deforestation and wildfire events. Fire scars preferentially occur where there is greater sun exposure. It is possible to observe a negative correlation between the natural regeneration process and the fire scars. We concluded that fire severity is one of the factors that shape the landscape of the region while slowing the regeneration process in preferential areas.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.09.016DOI Listing
February 2019
-->