Publications by authors named "Chung-Yen Lin"

50 Publications

Androgenic Sensitivities and Ovarian Gene Expression Profiles Prior to Treatment in Japanese Eel (Anguilla japonica).

Mar Biotechnol (NY) 2021 Jun 30;23(3):430-444. Epub 2021 Jun 30.

Institute of Information Science, Academia Sinica, No. 128 Academia Road, Section 2, Nankang Dist., 115, Taipei, Taiwan.

Androgens stimulate ovarian development in eels. Our previous report indicated a correlation between the initial (debut) ovarian status (determined by kernel density estimation (KDE), presented as a probability density of oocyte size) and the consequence of 17MT treatment (change in ovary). The initial ovarian status appeared to be an important factor influencing ovarian androgenic sensitivity. We postulated that the sensitivities of initial ovaries are correlated with their gene expression profiles. Japanese eels underwent operation to sample the initial ovarian tissues, and the samples were stored in liquid nitrogen. Using high-throughput next-generation sequencing (NGS) technology, ovarian transcriptomic data were mined and analyzed based on functional gene classification with cutoff-based differentially expressed genes (DEGs); the ovarian status was transformed into gene expression profiles globally or was represented by a set of gene list. Our results also implied that the initial ovary might be an important factor influencing the outcomes of 17MT treatments, and the genes related with neuronal activities or neurogenesis seemed to play an essential role in the positive effect.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10126-021-10035-6DOI Listing
June 2021

ATACgraph: Profiling Genome-Wide Chromatin Accessibility From ATAC-seq.

Front Genet 2020 13;11:618478. Epub 2021 Jan 13.

Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.

Assay for transposase-accessible chromatin using sequencing data (ATAC-seq) is an efficient and precise method for revealing chromatin accessibility across the genome. Most of the current ATAC-seq tools follow chromatin immunoprecipitation sequencing (ChIP-seq) strategies that do not consider ATAC-seq-specific properties. To incorporate specific ATAC-seq quality control and the underlying biology of chromatin accessibility, we developed a bioinformatics software named ATACgraph for analyzing and visualizing ATAC-seq data. ATACgraph profiles accessible chromatin regions and provides ATAC-seq-specific information including definitions of nucleosome-free regions (NFRs) and nucleosome-occupied regions. ATACgraph also allows identification of differentially accessible regions between two ATAC-seq datasets. ATACgraph incorporates the docker image with the Galaxy platform to provide an intuitive user experience via the graphical interface. Without tedious installation processes on a local machine or cloud, users can analyze data through activated websites using pre-designed workflows or customized pipelines composed of ATACgraph modules. Overall, ATACgraph is an effective tool designed for ATAC-seq for biologists with minimal bioinformatics knowledge to analyze chromatin accessibility. ATACgraph can be run on any ATAC-seq data with no limit to specific genomes. As validation, we demonstrated ATACgraph on human genome to showcase its functions for ATAC-seq interpretation. This software is publicly accessible and can be downloaded at https://github.com/RitataLU/ATACgraph.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fgene.2020.618478DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7874078PMC
January 2021

Gut Fecal Microbiota Transplant in a Mouse Model of Orthotopic Rectal Cancer.

Front Oncol 2020 28;10:568012. Epub 2020 Oct 28.

Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.

The gut microbiota is reported to play an important role in carcinogenesis and the treatment of CRC. SW480 and SW620 colon cancer cells integrated with infrared fluorescent proteins were injected into the rectal submucosa of nude mice. In the subsequent 30 days, we observed tumor growth weekly using an imaging system. The bacterial solution was infused anally into the mice to perform bacterial transplant. Phosphate-buffered saline, , and solutions were infused individually. The 16S ribosomal DNA (rDNA) and polymerase chain reaction of murine feces were investigated to confirm the colonization of target bacteria. In the SW620 orthotopic xenograft rectal cancer model, 4 of 5 mice developed rectal cancer by 30 days after submucosal injection. In the SW480 orthotopic xenograft rectal cancer model, 2 of 6 mice developed rectal cancer by 30 days after submucosal injection. For the 16S rDNA analysis, the mice receiving the bacterial solution infusion demonstrated positive findings for and . With the successful establishment of a mouse model of orthotopic rectal cancer and transplant of target bacteria, we can further explore the relationship between gut microbiota and CRC. The role of fecal microbiota transplant in the treatment and alleviation of adverse events of chemotherapy in CRC could be clarified in subsequent studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2020.568012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658813PMC
October 2020

Index of Cancer-Associated Fibroblasts Is Superior to the Epithelial-Mesenchymal Transition Score in Prognosis Prediction.

Cancers (Basel) 2020 Jun 28;12(7). Epub 2020 Jun 28.

National Institute of Cancer Research, National Health Research Institutes, Miaoli County 35053, Taiwan.

In many solid tumors, tissue of the mesenchymal subtype is frequently associated with epithelial-mesenchymal transition (EMT), strong stromal infiltration, and poor prognosis. Emerging evidence from tumor ecosystem studies has revealed that the two main components of tumor stroma, namely, infiltrated immune cells and cancer-associated fibroblasts (CAFs), also express certain typical EMT genes and are not distinguishable from intrinsic tumor EMT, where bulk tissue is concerned. Transcriptomic analysis of xenograft tissues provides a unique advantage in dissecting genes of tumor (human) or stroma (murine) origins. By transcriptomic analysis of xenograft tissues, we found that oral squamous cell carcinoma (OSCC) tumor cells with a high EMT score, the computed mesenchymal likelihood based on the expression signature of canonical EMT markers, are associated with elevated stromal contents featured with fibronectin 1 (Fn1) and transforming growth factor-β (Tgfβ) axis gene expression. In conjugation with meta-analysis of these genes in clinical OSCC datasets, we further extracted a four-gene index, comprising FN1, TGFB2, TGFBR2, and TGFBI, as an indicator of CAF abundance. The CAF index is more powerful than the EMT score in predicting survival outcomes, not only for oral cancer but also for the cancer genome atlas (TCGA) pan-cancer cohort comprising 9356 patients from 32 cancer subtypes. Collectively, our results suggest that a further distinction and integration of the EMT score with the CAF index will enhance prognosis prediction, thus paving the way for curative medicine in clinical oncology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers12071718DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408083PMC
June 2020

Piwi reduction in the aged niche eliminates germline stem cells via Toll-GSK3 signaling.

Nat Commun 2020 06 19;11(1):3147. Epub 2020 Jun 19.

Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan.

Transposons are known to participate in tissue aging, but their effects on aged stem cells remain unclear. Here, we report that in the Drosophila ovarian germline stem cell (GSC) niche, aging-related reductions in expression of Piwi (a transposon silencer) derepress retrotransposons and cause GSC loss. Suppression of Piwi expression in the young niche mimics the aged niche, causing retrotransposon depression and coincident activation of Toll-mediated signaling, which promotes Glycogen synthase kinase 3 activity to degrade β-catenin. Disruption of β-catenin-E-cadherin-mediated GSC anchorage then results in GSC loss. Knocking down gypsy (a highly active retrotransposon) or toll, or inhibiting reverse transcription in the piwi-deficient niche, suppresses GSK3 activity and β-catenin degradation, restoring GSC-niche attachment. This retrotransposon-mediated impairment of aged stem cell maintenance may have relevance in many tissues, and could represent a viable therapeutic target for aging-related tissue degeneration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-16858-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7305233PMC
June 2020

EpiMOLAS: an intuitive web-based framework for genome-wide DNA methylation analysis.

BMC Genomics 2020 Apr 2;21(Suppl 3):163. Epub 2020 Apr 2.

Institute of Information Science, Academia Sinica, Taipei, Taiwan.

Background: DNA methylation is a crucial epigenomic mechanism in various biological processes. Using whole-genome bisulfite sequencing (WGBS) technology, methylated cytosine sites can be revealed at the single nucleotide level. However, the WGBS data analysis process is usually complicated and challenging.

Results: To alleviate the associated difficulties, we integrated the WGBS data processing steps and downstream analysis into a two-phase approach. First, we set up the required tools in Galaxy and developed workflows to calculate the methylation level from raw WGBS data and generate a methylation status summary, the mtable. This computation environment is wrapped into the Docker container image DocMethyl, which allows users to rapidly deploy an executable environment without tedious software installation and library dependency problems. Next, the mtable files were uploaded to the web server EpiMOLAS_web to link with the gene annotation databases that enable rapid data retrieval and analyses.

Conclusion: To our knowledge, the EpiMOLAS framework, consisting of DocMethyl and EpiMOLAS_web, is the first approach to include containerization technology and a web-based system for WGBS data analysis from raw data processing to downstream analysis. EpiMOLAS will help users cope with their WGBS data and also conduct reproducible analyses of publicly available data, thereby gaining insights into the mechanisms underlying complex biological phenomenon. The Galaxy Docker image DocMethyl is available at https://hub.docker.com/r/lsbnb/docmethyl/. EpiMOLAS_web is publicly accessible at http://symbiosis.iis.sinica.edu.tw/epimolas/.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12864-019-6404-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114791PMC
April 2020

The role of the bacterial protease Prc in the uropathogenesis of extraintestinal pathogenic Escherichia coli.

J Biomed Sci 2020 Jan 3;27(1):14. Epub 2020 Jan 3.

Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.

Background: Extraintestinal pathogenic E. coli (ExPEC) remains one of the most prevalent bacterial pathogens that cause extraintestinal infections, including neonatal meningitis, septicemia, and urinary tract (UT) infections (UTIs). Antibiotic therapy has been the conventional treatment for such infections, but its efficacy has decreased due to the emergence of antibiotic-resistant bacteria. Identification and characterization of bacterial factors that contribute to the severity of infection would facilitate the development of novel therapeutic strategies. The ExPEC periplasmic protease Prc contributes to the pathogen's ability to evade complement-mediated killing in the serum. Here, we further investigated the role of the Prc protease in ExPEC-induced UTIs and the underlying mechanism.

Methods: The uropathogenic role of Prc was determined in a mouse model of UTIs. Using global quantitative proteomic analyses, we revealed that the expression of FliC and other outer membrane-associated proteins was altered by Prc deficiency. Comparative transcriptome analyses identified that Prc deficiency affected expression of the flagellar regulon and genes that are regulated by five extracytoplasmic signaling systems.

Results: A mutant ExPEC with a prc deletion was attenuated in bladder and kidney colonization. Global quantitative proteomic analyses of the prc mutant and wild-type ExPEC strains revealed significantly reduced flagellum expression in the absence of Prc, consequently impairing bacterial motility. The prc deletion triggered downregulation of the flhDC operon encoding the master transcriptional regulator of flagellum biogenesis. Overexpressing flhDC restored the prc mutant's motility and ability to colonize the UT, suggesting that the impaired motility is responsible for attenuated UT colonization of the mutant. Further comparative transcriptome analyses revealed that Prc deficiency activated the σ and RcsCDB signaling pathways. These pathways were responsible for the diminished flhDC expression. Finally, the activation of the RcsCDB system was attributed to the intracellular accumulation of a known Prc substrate Spr in the prc mutant. Spr is a peptidoglycan hydrolase and its accumulation destabilizes the bacterial envelope.

Conclusions: We demonstrated for the first time that Prc is essential for full ExPEC virulence in UTIs. Our results collectively support the idea that Prc is essential for bacterial envelope integrity, thus explaining how Prc deficiency results in an attenuated ExPEC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12929-019-0605-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941253PMC
January 2020

Using high-throughput transcriptome sequencing to investigate the biotransformation mechanism of hexabromocyclododecane with Rhodopseudomonas palustris in water.

Sci Total Environ 2019 Nov 10;692:249-258. Epub 2019 Jul 10.

Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan. Electronic address:

We discovered one purple photosynthetic bacterium, Rhodopseudomonas palustris YSC3, which has a specific ability to degrade 1, 2, 5, 6, 9, 10-hexabromocyclododecane (HBCD). The whole transcriptome of R. palustris YSC3 was analyzed using the RNA-based sequencing technology in illumina and was compared as well as discussed through Multi-Omics onLine Analysis System (MOLAS, http://molas.iis.sinica.edu.tw/NTUIOBYSC3/) platform we built. By using genome based mapping approach, we can align the trimmed reads on the genome of R. palustris and estimate the expression profiling for each transcript. A total of 341 differentially expressed genes (DEGs) in HBCD-treated R. palustris (RPH) versus control R. palustris (RPC) was identified by 2-fold changes, among which 305 genes were up-regulated and 36 genes were down-regulated. The regulated genes were mapped to the database of Gene Ontology (GO) and Genes and Genomes Encyclopedia of Kyoto (KEGG), resulting in 78 pathways being identified. Among those DEGs which annotated to important functions in several metabolic pathways, including those involved in two-component system (13.6%), ribosome assembly (10.7%), glyoxylate and dicarboxylate metabolism (5.3%), fatty acid degradation (4.7%), drug metabolism-cytochrome P450 (2.3%), and chlorocyclohexane and chlorobenzene degradation (3.0%) were differentially expressed in RPH and RPC samples. We also identified one transcript annotated as dehalogenase and other genes involved in the HBCD biotransformation in R. palustris. Furthermore, the putative HBCD biotransformation mechanism in R. palustris was proposed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.07.140DOI Listing
November 2019

SQUAT: a Sequencing Quality Assessment Tool for data quality assessments of genome assemblies.

BMC Genomics 2019 Apr 18;19(Suppl 9):238. Epub 2019 Apr 18.

Institute of Information Science, Academia Sinica, Taipei, Taiwan.

Background: With the rapid increase in genome sequencing projects for non-model organisms, numerous genome assemblies are currently in progress or available as drafts, but not made available as satisfactory, usable genomes. Data quality assessment of genome assemblies is gaining importance not only for people who perform the assembly/re-assembly processes, but also for those who attempt to use assemblies as maps in downstream analyses. Recent studies of the quality control, quality evaluation/ assessment of genome assemblies have focused on either quality control of reads before assemblies or evaluation of the assemblies with respect to their contiguity and correctness. However, correctness assessment depends on a reference and is not applicable for de novo assembly projects. Hence, development of methods providing both post-assembly and pre-assembly quality assessment reports for examining the quality/correctness of de novo assemblies and the input reads is worth studying.

Results: We present SQUAT, an efficient tool for both pre-assembly and post-assembly quality assessment of de novo genome assemblies. The pre-assembly module of SQUAT computes quality statistics of reads and presents the analysis in a well-designed interface to visualize the distribution of high- and poor-quality reads in a portable HTML report. The post-assembly module of SQUAT provides read mapping analytics in an HTML format. We categorized reads into several groups including uniquely mapped reads, multiply mapped, unmapped reads; for uniquely mapped reads, we further categorized them into perfectly matched, with substitutions, containing clips, and the others. We carefully defined the poorly mapped (PM) reads into several groups to prevent the underestimation of unmapped reads; indeed, a high PM% would be a sign of a poor assembly that requires researchers' attention for further examination or improvements before using the assembly. Finally, we evaluate SQUAT with six datasets, including the genome assemblies for eel, worm, mushroom, and three bacteria. The results show that SQUAT reports provide useful information with details for assessing the quality of assemblies and reads.

Availability: The SQUAT software with links to both its docker image and the on-line manual is freely available at https://github.com/luke831215/SQUAT .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12864-019-5445-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7402383PMC
April 2019

Genetic loci determining total immunoglobulin E levels from birth through adulthood.

Allergy 2019 03 28;74(3):621-625. Epub 2018 Nov 28.

Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/all.13654DOI Listing
March 2019

A gene profiling deconvolution approach to estimating immune cell composition from complex tissues.

BMC Bioinformatics 2018 05 8;19(Suppl 4):154. Epub 2018 May 8.

Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan.

Background: A new emerged cancer treatment utilizes intrinsic immune surveillance mechanism that is silenced by those malicious cells. Hence, studies of tumor infiltrating lymphocyte populations (TILs) are key to the success of advanced treatments. In addition to laboratory methods such as immunohistochemistry and flow cytometry, in silico gene expression deconvolution methods are available for analyses of relative proportions of immune cell types.

Results: Herein, we used microarray data from the public domain to profile gene expression pattern of twenty-two immune cell types. Initially, outliers were detected based on the consistency of gene profiling clustering results and the original cell phenotype notation. Subsequently, we filtered out genes that are expressed in non-hematopoietic normal tissues and cancer cells. For every pair of immune cell types, we ran t-tests for each gene, and defined differentially expressed genes (DEGs) from this comparison. Equal numbers of DEGs were then collected as candidate lists and numbers of conditions and minimal values for building signature matrixes were calculated. Finally, we used v -Support Vector Regression to construct a deconvolution model. The performance of our system was finally evaluated using blood biopsies from 20 adults, in which 9 immune cell types were identified using flow cytometry. The present computations performed better than current state-of-the-art deconvolution methods.

Conclusions: Finally, we implemented the proposed method into R and tested extensibility and usability on Windows, MacOS, and Linux operating systems. The method, MySort, is wrapped as the Galaxy platform pluggable tool and usage details are available at https://testtoolshed.g2.bx.psu.edu/view/moneycat/mysort/e3afe097e80a .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12859-018-2069-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998872PMC
May 2018

Functional Characteristics of the Flying Squirrel's Cecal Microbiota under a Leaf-Based Diet, Based on Multiple Meta-Omic Profiling.

Front Microbiol 2017 4;8:2622. Epub 2018 Jan 4.

Department of Life Science, National Taiwan University, Taipei, Taiwan.

Mammalian herbivores rely on microbial activities in an expanded gut chamber to convert plant biomass into absorbable nutrients. Distinct from ruminants, small herbivores typically have a simple stomach but an enlarged cecum to harbor symbiotic microbes; however, knowledge of this specialized gut structure and characteristics of its microbial contents is limited. Here, we used leaf-eating flying squirrels as a model to explore functional characteristics of the cecal microbiota adapted to a high-fiber, toxin-rich diet. Specifically, environmental conditions across gut regions were evaluated by measuring mass, pH, feed particle size, and metabolomes. Then, parallel metagenomes and metatranscriptomes were used to detect microbial functions corresponding to the cecal environment. Based on metabolomic profiles, >600 phytochemical compounds were detected, although many were present only in the foregut and probably degraded or transformed by gut microbes in the hindgut. Based on metagenomic (DNA) and metatranscriptomic (RNA) profiles, taxonomic compositions of the cecal microbiota were dominated by bacteria of the Firmicutes taxa; they contained major gene functions related to degradation and fermentation of leaf-derived compounds. Based on functional compositions, genes related to multidrug exporters were rich in microbial genomes, whereas genes involved in nutrient importers were rich in microbial transcriptomes. In addition, genes encoding chemotaxis-associated components and glycoside hydrolases specific for plant beta-glycosidic linkages were abundant in both DNA and RNA. This exploratory study provides findings which may help to form molecular-based hypotheses regarding functional contributions of symbiotic gut microbiota in small herbivores with folivorous dietary habits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fmicb.2017.02622DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5758534PMC
January 2018

Systematic identification of anti-interferon function on hepatitis C virus genome reveals p7 as an immune evasion protein.

Proc Natl Acad Sci U S A 2017 02 3;114(8):2018-2023. Epub 2017 Feb 3.

Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095;

Hepatitis C virus (HCV) encodes mechanisms to evade the multilayered antiviral actions of the host immune system. Great progress has been made in elucidating the strategies HCV employs to down-regulate interferon (IFN) production, impede IFN signaling transduction, and impair IFN-stimulated gene (ISG) expression. However, there is a limited understanding of the mechanisms governing how viral proteins counteract the antiviral functions of downstream IFN effectors due to the lack of an efficient approach to identify such interactions systematically. To study the mechanisms by which HCV antagonizes the IFN responses, we have developed a high-throughput profiling platform that enables mapping of HCV sequences critical for anti-IFN function at high resolution. Genome-wide profiling performed with a 15-nt insertion mutant library of HCV showed that mutations in the p7 region conferred high levels of IFN sensitivity, which could be alleviated by the expression of WT p7 protein. This finding suggests that p7 protein of HCV has an immune evasion function. By screening a liver-specific ISG library, we identified that IFI6-16 significantly inhibits the replication of p7 mutant viruses without affecting WT virus replication. In contrast, knockout of IFI6-16 reversed the IFN hypersensitivity of p7 mutant virus. In addition, p7 was found to be coimmunoprecipitated with IFI6-16 and to counteract the function of IFI6-16 by depolarizing the mitochondria potential. Our data suggest that p7 is a critical immune evasion protein that suppresses the antiviral IFN function by counteracting the function of IFI6-16.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1614623114DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338388PMC
February 2017

TEA: the epigenome platform for Arabidopsis methylome study.

BMC Genomics 2016 12 22;17(Suppl 13):1027. Epub 2016 Dec 22.

Institute of Information Science, Academia Sinica, Taipei, Taiwan.

Background: Bisulfite sequencing (BS-seq) has become a standard technology to profile genome-wide DNA methylation at single-base resolution. It allows researchers to conduct genome-wise cytosine methylation analyses on issues about genomic imprinting, transcriptional regulation, cellular development and differentiation. One single data from a BS-Seq experiment is resolved into many features according to the sequence contexts, making methylome data analysis and data visualization a complex task.

Results: We developed a streamlined platform, TEA, for analyzing and visualizing data from whole-genome BS-Seq (WGBS) experiments conducted in the model plant Arabidopsis thaliana. To capture the essence of the genome methylation level and to meet the efficiency for running online, we introduce a straightforward method for measuring genome methylation in each sequence context by gene. The method is scripted in Java to process BS-Seq mapping results. Through a simple data uploading process, the TEA server deploys a web-based platform for deep analysis by linking data to an updated Arabidopsis annotation database and toolkits.

Conclusions: TEA is an intuitive and efficient online platform for analyzing the Arabidopsis genomic DNA methylation landscape. It provides several ways to help users exploit WGBS data. TEA is freely accessible for academic users at: http://tea.iis.sinica.edu.tw .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12864-016-3326-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5260138PMC
December 2016

Characterization of FN1-FGFR1 and novel FN1-FGF1 fusion genes in a large series of phosphaturic mesenchymal tumors.

Mod Pathol 2016 11 22;29(11):1335-1346. Epub 2016 Jul 22.

Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.

Phosphaturic mesenchymal tumors typically cause paraneoplastic osteomalacia, chiefly as a result of FGF23 secretion. In a prior study, we identified FN1-FGFR1 fusion in 9 of 15 phosphaturic mesenchymal tumors. In this study, a total of 66 phosphaturic mesenchymal tumors and 7 tumors resembling phosphaturic mesenchymal tumor but without known phosphaturia were studied. A novel FN1-FGF1 fusion gene was identified in two cases without FN1-FGFR1 fusion by RNA sequencing and cross-validated with direct sequencing and western blot. Fluorescence in situ hybridization analyses revealed FN1-FGFR1 fusion in 16 of 39 (41%) phosphaturic mesenchymal tumors and identified an additional case with FN1-FGF1 fusion. The two fusion genes were mutually exclusive. Combined with previous data, the overall prevalence of FN1-FGFR1 and FN1-FGF1 fusions was 42% (21/50) and 6% (3/50), respectively. FGFR1 immunohistochemistry was positive in 82% (45/55) of phosphaturic mesenchymal tumors regardless of fusion status. By contrast, 121 cases of potential morphologic mimics (belonging to 13 tumor types) rarely expressed FGFR1, the main exceptions being solitary fibrous tumors (positive in 40%), chondroblastomas (40%), and giant cell tumors of bone (38%), suggesting a possible role for FGFR1 immunohistochemistry in the diagnosis of phosphaturic mesenchymal tumor. With the exception of one case reported in our prior study, none of the remaining tumors resembling phosphaturic mesenchymal tumor had either fusion type or expressed significant FGFR1. Our findings provide insight into possible mechanisms underlying the pathogenesis of phosphaturic mesenchymal tumor and imply a central role of the FGF1-FGFR1 signaling pathway. The novel FN1-FGF1 protein is expected to be secreted and serves as a ligand that binds and activates FGFR1 to achieve an autocrine loop. Further study is required to determine the functions of these fusion proteins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/modpathol.2016.137DOI Listing
November 2016

Dual-compartmental transcriptomic + proteomic analysis of a marine endosymbiosis exposed to environmental change.

Mol Ecol 2016 Dec;25(23):5944-5958

Institute of Information Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nangang, Taipei, 115, Taiwan.

As significant anthropogenic pressures are putting undue stress on the world's oceans, there has been a concerted effort to understand how marine organisms respond to environmental change. Transcriptomic approaches, in particular, have been readily employed to document the mRNA-level response of a plethora of marine invertebrates exposed to an array of simulated stress scenarios, with the tacit and untested assumption being that the respective proteins show a corresponding trend. To better understand the degree of congruency between mRNA and protein expression in an endosymbiotic marine invertebrate, mRNAs and proteins were sequenced from the same samples of the common, Indo-Pacific coral Seriatopora hystrix exposed to stable or upwelling-simulating conditions for 1 week. Of the 167 proteins downregulated at variable temperature, only two were associated with mRNAs that were also differentially expressed between treatments. Of the 378 differentially expressed genes, none were associated with a differentially expressed protein. Collectively, these results highlight the inherent risk of inferring cellular behaviour based on mRNA expression data alone and challenge the current, mRNA-focused approach taken by most marine and many molecular biologists.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.13896DOI Listing
December 2016

Over-expression of AURKA, SKA3 and DSN1 contributes to colorectal adenoma to carcinoma progression.

Oncotarget 2016 Jul;7(29):45803-45818

Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.

Development of colorectal cancer (CRC) involves sequential transformation of normal mucosal tissues into benign adenomas and then adenomas into malignant tumors. The identification of genes crucial for malignant transformation in colorectal adenomas (CRAs) has been based primarily on cross-sectional observations. In this study, we identified relevant genes using autologous samples. By performing genome-wide SNP genotyping and RNA sequencing analysis of adenocarcinomas, adenomatous polyps, and non-neoplastic colon tissues (referred as tri-part samples) from individual patients, we identified 68 genes with differential copy number alterations and progressively dysregulated expression. Aurora A, SKA3, and DSN1 protein levels were sequentially up-regulated in the samples, and this overexpression was associated with chromosome instability (CIN). Knockdown of SKA3 in CRC cells dramatically reduced cell growth rates and increased apoptosis. Depletion of SKA3 or DSN1 induced G2/M arrest and decreased migration, invasion, and anchorage-independent growth. AURKA and DSN1 are thus critical for chromosome 20q amplification-associated malignant transformation in CRA. Moreover, SKA3 at chromosome 13q was identified as a novel gene involved in promoting malignant transformation. Evaluating the expression of these genes may help identify patients with progressive adenomas, helping to improve treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.9960DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216762PMC
July 2016

Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.

BMC Genomics 2015 9;16 Suppl 12:S9. Epub 2015 Dec 9.

Background: Recent progress in next-generation sequencing technology has afforded several improvements such as ultra-high throughput at low cost, very high read quality, and substantially increased sequencing depth. State-of-the-art high-throughput sequencers, such as the Illumina MiSeq system, can generate ~15 Gbp sequencing data per run, with >80% bases above Q30 and a sequencing depth of up to several 1000x for small genomes. Illumina HiSeq 2500 is capable of generating up to 1 Tbp per run, with >80% bases above Q30 and often >100x sequencing depth for large genomes. To speed up otherwise time-consuming genome assembly and/or to obtain a skeleton of the assembly quickly for scaffolding or progressive assembly, methods for noise removal and reduction of redundancy in the original data, with almost equal or better assembly results, are worth studying.

Results: We developed two subset selection methods for single-end reads and a method for paired-end reads based on base quality scores and other read analytic tools using the MapReduce framework. We proposed two strategies to select reads: MinimalQ and ProductQ. MinimalQ selects reads with minimal base-quality above a threshold. ProductQ selects reads with probability of no incorrect base above a threshold. In the single-end experiments, we used Escherichia coli and Bacillus cereus datasets of MiSeq, Velvet assembler for genome assembly, and GAGE benchmark tools for result evaluation. In the paired-end experiments, we used the giant grouper (Epinephelus lanceolatus) dataset of HiSeq, ALLPATHS-LG genome assembler, and QUAST quality assessment tool for comparing genome assemblies of the original set and the subset. The results show that subset selection not only can speed up the genome assembly but also can produce substantially longer scaffolds.

Availability: The software is freely available at https://github.com/moneycat/QReadSelector.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2164-16-S12-S9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682372PMC
October 2016

Precise genotyping and recombination detection of Enterovirus.

BMC Genomics 2015 9;16 Suppl 12:S8. Epub 2015 Dec 9.

Enteroviruses (EV) with different genotypes cause diverse infectious diseases in humans and mammals. A correct EV typing result is crucial for effective medical treatment and disease control; however, the emergence of novel viral strains has impaired the performance of available diagnostic tools. Here, we present a web-based tool, named EVIDENCE (EnteroVirus In DEep conception, http://symbiont.iis.sinica.edu.tw/evidence), for EV genotyping and recombination detection. We introduce the idea of using mixed-ranking scores to evaluate the fitness of prototypes based on relatedness and on the genome regions of interest. Using phylogenetic methods, the most possible genotype is determined based on the closest neighbor among the selected references. To detect possible recombination events, EVIDENCE calculates the sequence distance and phylogenetic relationship among sequences of all sliding windows scanning over the whole genome. Detected recombination events are plotted in an interactive figure for viewing of fine details. In addition, all EV sequences available in GenBank were collected and revised using the latest classification and nomenclature of EV in EVIDENCE. These sequences are built into the database and are retrieved in an indexed catalog, or can be searched for by keywords or by sequence similarity. EVIDENCE is the first web-based tool containing pipelines for genotyping and recombination detection, with updated, built-in, and complete reference sequences to improve sensitivity and specificity. The use of EVIDENCE can accelerate genotype identification, aiding clinical diagnosis and enhancing our understanding of EV evolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2164-16-S12-S8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682392PMC
October 2016

De Novo Assembly of the Whole Transcriptome of the Wild Embryo, Preleptocephalus, Leptocephalus, and Glass Eel of Anguilla japonica and Deciphering the Digestive and Absorptive Capacities during Early Development.

PLoS One 2015 25;10(9):e0139105. Epub 2015 Sep 25.

Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, Taiwan.

Natural stocks of Japanese eel (Anguilla japonica) have decreased drastically because of overfishing, habitat destruction, and changes in the ocean environment over the past few decades. However, to date, artificial mass production of glass eels is far from reality because of the lack of appropriate feed for the eel larvae. In this study, wild glass eel, leptocephali, preleptocephali, and embryos were collected to conduct RNA-seq. Approximately 279 million reads were generated and assembled into 224,043 transcripts. The transcript levels of genes coding for digestive enzymes and nutrient transporters were investigated to estimate the capacities for nutrient digestion and absorption during early development. The results showed that the transcript levels of protein digestion enzymes were higher than those of carbohydrate and lipid digestion enzymes in the preleptocephali and leptocephali, and the transcript levels of amino acid transporters were also higher than those of glucose and fructose transporters and the cholesterol transporter. In addition, the transcript levels of glucose and fructose transporters were significantly raising in the leptocephali. Moreover, the transcript levels of protein, carbohydrate, and lipid digestion enzymes were balanced in the glass eel, but the transcript levels of amino acid transporters were higher than those of glucose and cholesterol transporters. These findings implied that preleptocephali and leptocephali prefer high-protein food, and the nutritional requirements of monosaccharides and lipids for the eel larvae vary with growth. An online database (http://molas.iis.sinica.edu.tw/jpeel/) that will provide the sequences and the annotated results of assembled transcripts was established for the eel research community.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139105PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4583181PMC
May 2016

The effect of red light and far-red light conditions on secondary metabolism in agarwood.

BMC Plant Biol 2015 Jun 12;15:139. Epub 2015 Jun 12.

Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, 11529, Nankang, Taipei, Taiwan.

Background: Agarwood, a heartwood derived from Aquilaria trees, is a valuable commodity that has seen prevalent use among many cultures. In particular, it is widely used in herbal medicine and many compounds in agarwood are known to exhibit medicinal properties. Although there exists much research into medicinal herbs and extraction of high value compounds, few have focused on increasing the quantity of target compounds through stimulation of its related pathways in this species.

Results: In this study, we observed that cucurbitacin yield can be increased through the use of different light conditions to stimulate related pathways and conducted three types of high-throughput sequencing experiments in order to study the effect of light conditions on secondary metabolism in agarwood. We constructed genome-wide profiles of RNA expression, small RNA, and DNA methylation under red light and far-red light conditions. With these profiles, we identified a set of small RNA which potentially regulates gene expression via the RNA-directed DNA methylation pathway.

Conclusions: We demonstrate that light conditions can be used to stimulate pathways related to secondary metabolism, increasing the yield of cucurbitacins. The genome-wide expression and methylation profiles from our study provide insight into the effect of light on gene expression for secondary metabolism in agarwood and provide compelling new candidates towards the study of functional secondary metabolic components.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12870-015-0537-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464252PMC
June 2015

cytoHubba: identifying hub objects and sub-networks from complex interactome.

BMC Syst Biol 2014 8;8 Suppl 4:S11. Epub 2014 Dec 8.

Background: Network is a useful way for presenting many types of biological data including protein-protein interactions, gene regulations, cellular pathways, and signal transductions. We can measure nodes by their network features to infer their importance in the network, and it can help us identify central elements of biological networks.

Results: We introduce a novel Cytoscape plugin cytoHubba for ranking nodes in a network by their network features. CytoHubba provides 11 topological analysis methods including Degree, Edge Percolated Component, Maximum Neighborhood Component, Density of Maximum Neighborhood Component, Maximal Clique Centrality and six centralities (Bottleneck, EcCentricity, Closeness, Radiality, Betweenness, and Stress) based on shortest paths. Among the eleven methods, the new proposed method, MCC, has a better performance on the precision of predicting essential proteins from the yeast PPI network.

Conclusions: CytoHubba provide a user-friendly interface to explore important nodes in biological networks. It computes all eleven methods in one stop shopping way. Besides, researchers are able to combine cytoHubba with and other plugins into a novel analysis scheme. The network and sub-networks caught by this topological analysis strategy will lead to new insights on essential regulatory networks and protein drug targets for experimental biologists. According to cytoscape plugin download statistics, the accumulated number of cytoHubba is around 6,700 times since 2010.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1752-0509-8-S4-S11DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290687PMC
August 2015

The novel white spot syndrome virus-induced gene, PmERP15, encodes an ER stress-responsive protein in black tiger shrimp, Penaeus monodon.

Dev Comp Immunol 2015 Apr 11;49(2):239-48. Epub 2014 Dec 11.

Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.

By microarray screening, we identified a white spot syndrome virus (WSSV)-strongly induced novel gene in gills of Penaeus monodon. The gene, PmERP15, encodes a putative transmembrane protein of 15 kDa, which only showed some degree of similarity (54-59%) to several unknown insect proteins, but had no hits to shrimp proteins. RT-PCR showed that PmERP15 was highly expressed in the hemocytes, heart and lymphoid organs, and that WSSV-induced strong expression of PmERP15 was evident in all tissues examined. Western blot analysis likewise showed that WSSV strongly up-regulated PmERP15 protein levels. In WSSV-infected hemocytes, immunofluorescence staining showed that PmERP15 protein was colocalized with an ER enzyme, protein disulfide isomerase, and in Sf9 insect cells, PmERP15-EGFP fusion protein colocalized with ER -Tracker™ Red dye as well. GRP78, an ER stress marker, was found to be up-regulated in WSSV-infected P. monodon, and both PmERP15 and GRP78 were up-regulated in shrimp injected with ER stress inducers tunicamycin and dithiothreitol. Silencing experiments showed that although PmERP15 dsRNA-injected shrimp succumbed to WSSV infection more rapidly, the WSSV copy number had no significant changes. These results suggest that PmERP15 is an ER stress-induced, ER resident protein, and its induction in WSSV-infected shrimp is caused by the ER stress triggered by WSSV infection. Furthermore, although PmERP15 has no role in WSSV multiplication, its presence is essential for the survival of WSSV-infected shrimp.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2014.12.001DOI Listing
April 2015

Compartment-specific transcriptomics in a reef-building coral exposed to elevated temperatures.

Mol Ecol 2014 Dec;23(23):5816-30

National Museum of Marine Biology and Aquarium, 2 Houwan Rd., Checheng, Pingtung, 944, Taiwan; Living Oceans Foundation, 8181 Professional Place, Suite 215, Landover, MD, 20785, USA.

Although rising ocean temperatures threaten scleractinian corals and the reefs they construct, certain reef corals can acclimate to elevated temperatures to which they are rarely exposed in situ. Specimens of the model Indo-Pacific reef coral Pocillopora damicornis collected from upwelling reefs of Southern Taiwan were previously found to have survived a 36-week exposure to 30°C, a temperature they encounter infrequently and one that can elicit the breakdown of the coral-dinoflagellate (genus Symbiodinium) endosymbiosis in many corals of the Pacific Ocean. To gain insight into the subcellular pathways utilized by both the coral hosts and their mutualistic Symbiodinium populations to acclimate to this temperature, mRNAs from both control (27°C) and high (30°C)-temperature samples were sequenced on an Illumina platform and assembled into a 236 435-contig transcriptome. These P. damicornis specimens were found to be ~60% anthozoan and 40% microbe (Symbiodinium, other eukaryotic microbes, and bacteria), from an mRNA-perspective. Furthermore, a significantly higher proportion of genes from the Symbiodinium compartment were differentially expressed after two weeks of exposure. Specifically, at elevated temperatures, Symbiodinium populations residing within the coral gastrodermal tissues were more likely to up-regulate the expression of genes encoding proteins involved in metabolism than their coral hosts. Collectively, these transcriptome-scale data suggest that the two members of this endosymbiosis have distinct strategies for acclimating to elevated temperatures that are expected to characterize many of Earth's coral reefs in the coming decades.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.12982DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4265203PMC
December 2014

Identification of a novel FN1-FGFR1 genetic fusion as a frequent event in phosphaturic mesenchymal tumour.

J Pathol 2015 Mar 7;235(4):539-45. Epub 2015 Jan 7.

Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.

Phosphaturic mesenchymal tumours (PMTs) are uncommon soft tissue and bone tumours that typically cause hypophosphataemia and tumour-induced osteomalacia (TIO) through secretion of phosphatonins including fibroblast growth factor 23 (FGF23). PMT has recently been accepted by the World Health Organization as a formal tumour entity. The genetic basis and oncogenic pathways underlying its tumourigenesis remain obscure. In this study, we identified a novel FN1-FGFR1 fusion gene in three out of four PMTs by next-generation RNA sequencing. The fusion transcripts and proteins were subsequently confirmed with RT-PCR and western blotting. Fluorescence in situ hybridization analysis showed six cases with FN1-FGFR1 fusion out of an additional 11 PMTs. Overall, nine out of 15 PMTs (60%) harboured this fusion. The FN1 gene possibly provides its constitutively active promoter and the encoded protein's oligomerization domains to overexpress and facilitate the activation of the FGFR1 kinase domain. Interestingly, unlike the prototypical leukaemia-inducing FGFR1 fusion genes, which are ligand-independent, the FN1-FGFR1 chimeric protein was predicted to preserve its ligand-binding domains, suggesting an advantage of the presence of its ligands (such as FGF23 secreted at high levels by the tumour) in the activation of the chimeric receptor tyrosine kinase, thus effecting an autocrine or a paracrine mechanism of tumourigenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/path.4465DOI Listing
March 2015

A comprehensive functional map of the hepatitis C virus genome provides a resource for probing viral proteins.

mBio 2014 Sep 30;5(5):e01469-14. Epub 2014 Sep 30.

Unlabelled: Pairing high-throughput sequencing technologies with high-throughput mutagenesis enables genome-wide investigations of pathogenic organisms. Knowledge of the specific functions of protein domains encoded by the genome of the hepatitis C virus (HCV), a major human pathogen that contributes to liver disease worldwide, remains limited to insight from small-scale studies. To enhance the capabilities of HCV researchers, we have obtained a high-resolution functional map of the entire viral genome by combining transposon-based insertional mutagenesis with next-generation sequencing. We generated a library of 8,398 mutagenized HCV clones, each containing one 15-nucleotide sequence inserted at a unique genomic position. We passaged this library in hepatic cells, recovered virus pools, and simultaneously assayed the abundance of mutant viruses in each pool by next-generation sequencing. To illustrate the validity of the functional profile, we compared the genetic footprints of viral proteins with previously solved protein structures. Moreover, we show the utility of these genetic footprints in the identification of candidate regions for epitope tag insertion. In a second application, we screened the genetic footprints for phenotypes that reflected defects in later steps of the viral life cycle. We confirmed that viruses with insertions in a region of the nonstructural protein NS4B had a defect in infectivity while maintaining genome replication. Overall, our genome-wide HCV mutant library and the genetic footprints obtained by high-resolution profiling represent valuable new resources for the research community that can direct the attention of investigators toward unidentified roles of individual protein domains.

Importance: Our insertional mutagenesis library provides a resource that illustrates the effects of relatively small insertions on local protein structure and HCV viability. We have also generated complementary resources, including a website (http://hangfei.bol.ucla.edu) and a panel of epitope-tagged mutant viruses that should enhance the research capabilities of investigators studying HCV. Researchers can now detect epitope-tagged viral proteins by established antibodies, which will allow biochemical studies of HCV proteins for which antibodies are not readily available. Furthermore, researchers can now quickly look up genotype-phenotype relationships and base further mechanistic studies on the residue-by-residue information from the functional profile. More broadly, this approach offers a general strategy for the systematic functional characterization of viruses on the genome scale.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/mBio.01469-14DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196222PMC
September 2014

CloudDOE: a user-friendly tool for deploying Hadoop clouds and analyzing high-throughput sequencing data with MapReduce.

PLoS One 2014 4;9(6):e98146. Epub 2014 Jun 4.

Institute of Information Science, Academia Sinica, Taipei, Taiwan.

Background: Explosive growth of next-generation sequencing data has resulted in ultra-large-scale data sets and ensuing computational problems. Cloud computing provides an on-demand and scalable environment for large-scale data analysis. Using a MapReduce framework, data and workload can be distributed via a network to computers in the cloud to substantially reduce computational latency. Hadoop/MapReduce has been successfully adopted in bioinformatics for genome assembly, mapping reads to genomes, and finding single nucleotide polymorphisms. Major cloud providers offer Hadoop cloud services to their users. However, it remains technically challenging to deploy a Hadoop cloud for those who prefer to run MapReduce programs in a cluster without built-in Hadoop/MapReduce.

Results: We present CloudDOE, a platform-independent software package implemented in Java. CloudDOE encapsulates technical details behind a user-friendly graphical interface, thus liberating scientists from having to perform complicated operational procedures. Users are guided through the user interface to deploy a Hadoop cloud within in-house computing environments and to run applications specifically targeted for bioinformatics, including CloudBurst, CloudBrush, and CloudRS. One may also use CloudDOE on top of a public cloud. CloudDOE consists of three wizards, i.e., Deploy, Operate, and Extend wizards. Deploy wizard is designed to aid the system administrator to deploy a Hadoop cloud. It installs Java runtime environment version 1.6 and Hadoop version 0.20.203, and initiates the service automatically. Operate wizard allows the user to run a MapReduce application on the dashboard list. To extend the dashboard list, the administrator may install a new MapReduce application using Extend wizard.

Conclusions: CloudDOE is a user-friendly tool for deploying a Hadoop cloud. Its smart wizards substantially reduce the complexity and costs of deployment, execution, enhancement, and management. Interested users may collaborate to improve the source code of CloudDOE to further incorporate more MapReduce bioinformatics tools into CloudDOE and support next-generation big data open source tools, e.g., Hadoop BigTop and Spark.

Availability: CloudDOE is distributed under Apache License 2.0 and is freely available at http://clouddoe.iis.sinica.edu.tw/.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098146PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045712PMC
March 2015

Sequencing and analysis of the transcriptome of the acorn worm Ptychodera flava, an indirect developing hemichordate.

Mar Genomics 2014 Jun 11;15:35-43. Epub 2014 May 11.

Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Institute of Oceanography, National Taiwan University, Taipei, Taiwan. Electronic address:

Hemichordates are the sister group of echinoderms, and together they are closely related to chordates within the deuterostome lineage. Therefore, hemichordates represent an important animal group for the understanding of both the evolution of developmental mechanisms in deuterostome animals and the origin of chordates. Recently, the majority of studies investigating hemichordates have focused on the direct-developing enteropneust hemichordate Saccoglossus kowalevskii; few have focused on the indirect-developing hemichordates, partly because of the lack of extensive genomic resources in these animals. In this study, we report the sequencing and analysis of a transcriptome from an indirect-developing enteropneust hemichordate Ptychodera flava. We sequenced a mixed cDNA library from six developmental stages using the Roche GS FLX Titanium System to generate more than 879,000 reads. These reads were assembled into 17,990 contigs with an average length of 1316bp. We found that 60% of the assembled contigs, along with 28% of the unassembled singleton reads, had significant hits to sequences in the NCBI database by a BLASTx search, and we also annotated these sequences and obtained Gene Ontology (GO) terms for 6744 contigs and 5802 singletons. We further identified candidate P. flava transcripts corresponding to genes involved in major developmental signaling pathways, including the Wnt, Notch and TGF-β signaling pathways. Using available genome/transcriptome datasets from the direct-developing hemichordate S. kowalevskii, the echinoderm Strongylocentrotus purpuratus and the chordate Branchiostoma floridae, we found that 90%, 80% and 73% of the annotated protein sequences in these respective species matched our P. flava transcriptome in a homology search. We also constructed a database for the P. flava transcriptome, and researchers can easily access this dataset online. Our dataset significantly increases the amount of available P. flava sequence data and can serve as a reference transcriptome for future studies using this species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.margen.2014.04.010DOI Listing
June 2014

High-throughput profiling of influenza A virus hemagglutinin gene at single-nucleotide resolution.

Sci Rep 2014 May 13;4:4942. Epub 2014 May 13.

1] Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA [2] Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA [3] AIDS Institute, University of California, Los Angeles, CA 90095, USA.

Genetic research on influenza virus biology has been informed in large part by nucleotide variants present in seasonal or pandemic samples, or individual mutants generated in the laboratory, leaving a substantial part of the genome uncharacterized. Here, we have developed a single-nucleotide resolution genetic approach to interrogate the fitness effect of point mutations in 98% of the amino acid positions in the influenza A virus hemagglutinin (HA) gene. Our HA fitness map provides a reference to identify indispensable regions to aid in drug and vaccine design as targeting these regions will increase the genetic barrier for the emergence of escape mutations. This study offers a new platform for studying genome dynamics, structure-function relationships, virus-host interactions, and can further rational drug and vaccine design. Our approach can also be applied to any virus that can be genetically manipulated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep04942DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018626PMC
May 2014

A quantitative high-resolution genetic profile rapidly identifies sequence determinants of hepatitis C viral fitness and drug sensitivity.

PLoS Pathog 2014 Apr 10;10(4):e1004064. Epub 2014 Apr 10.

Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America; The Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America; School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.

Widely used chemical genetic screens have greatly facilitated the identification of many antiviral agents. However, the regions of interaction and inhibitory mechanisms of many therapeutic candidates have yet to be elucidated. Previous chemical screens identified Daclatasvir (BMS-790052) as a potent nonstructural protein 5A (NS5A) inhibitor for Hepatitis C virus (HCV) infection with an unclear inhibitory mechanism. Here we have developed a quantitative high-resolution genetic (qHRG) approach to systematically map the drug-protein interactions between Daclatasvir and NS5A and profile genetic barriers to Daclatasvir resistance. We implemented saturation mutagenesis in combination with next-generation sequencing technology to systematically quantify the effect of every possible amino acid substitution in the drug-targeted region (domain IA of NS5A) on replication fitness and sensitivity to Daclatasvir. This enabled determination of the residues governing drug-protein interactions. The relative fitness and drug sensitivity profiles also provide a comprehensive reference of the genetic barriers for all possible single amino acid changes during viral evolution, which we utilized to predict clinical outcomes using mathematical models. We envision that this high-resolution profiling methodology will be useful for next-generation drug development to select drugs with higher fitness costs to resistance, and also for informing the rational use of drugs based on viral variant spectra from patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1004064DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983061PMC
April 2014
-->