Publications by authors named "Chrysoula Roufidou"

4 Publications

  • Page 1 of 1

Ovarian fluid in the three-spined stickleback Gasterosteus aculeatus: effects of egg overripening and sex steroid treatment.

J Fish Biol 2019 Mar;94(3):446-457

Department of Zoology, Stockholm University, Stockholm, Sweden.

The ovarian fluid properties of the three-spined stickleback Gasterosteus aculeatus were studied in overripe and non-overripe ovulated female sticklebacks and in females that were implanted with Silastic capsules containing testosterone (T), oestradiol (E2), 17,20β-dihydroxypregn-4-en-3-one (17,20β-P) or progesterone (P4) into the abdominal cavity. Overripe females had less ovarian fluid than non-overripe females, but with higher dry mass, higher protein concentration and lower viscosity. T and 17,20β-P increased the amount of ovarian fluid and the fluid protein concentration was increased by 17,20β-P. 1-D sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that ovarian fluid contains several proteins, with high individual variability but with no consistent differences between groups. Some of the ovarian fluid proteins appeared to correspond to proteins from the eggs. The results suggest that secretion of ovarian fluid may be influenced by steroid hormones and that changes in its properties are related to the overripening of ovulated eggs. In at least some respects it appears that the changes in the ovarian fluid is a result, rather than the cause of overripening.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfb.13915DOI Listing
March 2019

Hormonal changes over the spawning cycle in the female three-spined stickleback, Gasterosteus aculeatus.

Gen Comp Endocrinol 2018 02 2;257:97-105. Epub 2017 Aug 2.

Department of Zoology, Stockholm University, Stockholm, Sweden.

Female three-spined sticklebacks are batch spawners laying eggs in a nest built by the male. We sampled female sticklebacks at different time points, when they were ready to spawn and 6, 24, 48 and 72h post-spawning (hps) with a male. Following spawning, almost all females (15 out of 19) had ovulated eggs again at Day 3 post-spawning (72hps). At sampling, plasma, brain and pituitaries were collected, and the ovary and liver were weighed. Testosterone (T) and estradiol (E2) were measured by radioimmunoassay. Moreover, the mRNA levels of follicle-stimulating hormone (fsh-β) and luteinizing hormone (lh-β) in the pituitary, and of the gonadotropin-releasing hormones (GnRHs: gnrh2, gnrh3) and kisspeptin (kiss2) and its G protein-coupled receptor (gpr54) in the brain were measured by real-time qPCR. Ovarian weights peaked in "ready to spawn" females, dropped after spawning, before again progressively increasing from 6 to 72hps. Plasma T levels showed peaks at 24 and 48hps and decreased at 72hps, while E2 levels increased already at 6hps and remained at high levels up to 48hps. There was a strong positive correlation between T and E2 levels over the spawning cycle. Pituitary lh-β mRNA levels showed a peak at 48hps, while fsh-β did not change. The neuropeptides and gpr54 did not show any changes. The changes in T and E2 over the stickleback spawning cycle were largely consistent with those found in other multiple-spawning fishes whereas the marked correlation between T and E2 does not support T having other major roles over the cycle than being a precursor for E2.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2017.07.030DOI Listing
February 2018

Starvation and re-feeding affect Hsp expression, MAPK activation and antioxidant enzymes activity of European sea bass (Dicentrarchus labrax).

Comp Biochem Physiol A Mol Integr Physiol 2013 May 24;165(1):79-88. Epub 2013 Feb 24.

Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.

In the context of food deprivation in fish (wild and farmed), understanding of cellular responses is necessary in order to develop strategies to minimize stress caused by starvation in the aquaculture section. The present study evaluates the effects of long term starvation (1F-3S: one-month feeding-three-month starvation) and starvation/re-feeding (2S-2F: two-month starvation-two-month re-feeding) compared to the control group (4F-0S: four-month feeding-zero month starvation) on cellular stress response and antioxidant defense in organs, like the intestine, the liver, the red and white muscle of European sea bass Dicentrarchus labrax. Molecular responses were addressed through the expression of Hsp70 and Hsp90, the phosphorylation of stress-activated protein kinases and particularly p38 mitogen-activated protein kinase (p38 MAPK) and the extracellular signal-regulated kinases (ERK-1/2). For the determination of the effect of the oxidative stress caused by food deprivation and/or re-feeding, the (maximum) activities of antioxidant enzymes such as glutathione peroxidise (GPx), catalase (CAT) and superoxide dismutase (SOD) as well as the determination of thiobarbituric acid reactive substances (TBARS) were studied. The experimental feeding trials caused a tissue distinct and differential response on the cellular and antioxidant capacity of sea bass not only during the stressful process of starvation but also in re-feeding. Specifically, the intestine phosphorylation of ERKs and antioxidant enzymatic activities increased in the 2S-2F fish group, while in the 1F-3S group an increase was detected in the levels of the same proteins except for GPx. In the liver and the red muscle of 2S-2F fish, decreased Hsp70 and phosphorylated p38 MAPK levels and increased Hsp90 levels were observed. Additionally, SOD activity decreased in the red muscle of 2S-2F and 1F-3S groups. In the liver and red muscle of 1F-3S group Hsp70 levels increased, while the activation of p38 MAPK in the liver decreased. In the white muscle, Hsp90 levels decreased and the phosphorylation of p38 MAPK increased in both feeding regimes compared to control. In the same tissue, GPx and catalase levels were decreased in 2S-2F regime, while SOD levels were decreased in 1F-3S regime.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2013.02.019DOI Listing
May 2013

Expression of developmental-stage-specific genes in the gilthead sea bream Sparus aurata L.

Mar Biotechnol (NY) 2013 Jun 2;15(3):313-20. Epub 2012 Oct 2.

Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece.

The mechanism of early fish development as well as the control of egg quality is of great importance for the ability of the oocyte to develop after fertilization. Embryonic development is initially regulated by maternally provided mRNAs and later by the zygotic genome. Maternal mRNAs have an important role in initiating processes crucial to patterning the developing fish embryo. Furthermore, it has been shown that maternal RNA plays an important role in egg quality. The identification and characterization of candidate maternal genes in non-model fish species with important aquaculture interest like the gilthead sea bream Sparus aurata L. is of importance for future studies related to egg quality. The broodstock of the gilthead sea bream produces large quantities of eggs with a high and non-controllable quality variation. In the present study, we have studied the gene expression of 16 genes (gapdh 1 and 2, cathepsin D, L, S and Z, erk1, jnk1, p38 alpha and p38 delta, ppar alpha, beta and gamma, tubulin beta, ferritin M, cyclinA2) of different functional categories in seven developmental stages. The 16 genes were chosen based on their putative involvement in egg quality and regulation of early development. In total, 11 showed a characteristic gene expression pattern pinpointing to the possible function as maternal genes and thus may function as molecular biomarker for egg quality.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10126-012-9486-8DOI Listing
June 2013