Publications by authors named "Christopher Oze"

6 Publications

  • Page 1 of 1

Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review.

Environ Int 2019 10 31;131:104974. Epub 2019 Jul 31.

University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment and Energy, Seoul 05006, Republic of Korea. Electronic address:

The transformation of trace metals (TMs) in natural environmental systems has created significant concerns in recent decades. Ultramafic environments lead to potential risks to the agricultural products and, subsequently, to human health. This unique review presents geochemistry of ultramafic soils, TM fractionation (i.e. sequential and single extraction techniques), TM uptake and accumulation mechanisms of ultramafic flora, and ultramafic-associated health risks to human and agricultural crops. Ultramafic soils contain high levels of TMs (i.e. Cr, Ni, Mn, and Co) and have a low Ca:Mg ratio together with deficiencies in essential macronutrients required for the growth of crops. Even though a higher portion of TMs bind with the residual fraction of ultramafic soils, environmental changes (i.e. natural or anthropogenic) may increase the levels of TMs in the bioavailable or extractable fractions of ultramafic soils. Extremophile plants that have evolved to thrive in ultramafic soils present clear examples of evolutionary adaptations to TM resistance. The release of TMs into water sources and accumulation in food crops in and around ultramafic localities increases health risks for humans. Therefore, more focused investigations need to be implemented to understand the mechanisms related to the mobility and bioavailability of TMs in different ultramafic environments. Research gaps and directions for future studies are also discussed in this review. Lastly, we consider the importance of characterizing terrestrial ultramafic soil and its effect on crop plants in the context of multi-decadal plans by NASA and other space agencies to establish human colonies on Mars.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2019.104974DOI Listing
October 2019

Perchlorate as an emerging contaminant in soil, water and food.

Chemosphere 2016 May 8;150:667-677. Epub 2016 Feb 8.

Chemical and Environmental Systems Modeling Research Group, National Institute of Fundamental Studies, Kandy, Sri Lanka. Electronic address:

Perchlorate ( [Formula: see text] ) is a strong oxidizer and has gained significant attention due to its reactivity, occurrence, and persistence in surface water, groundwater, soil and food. Stable isotope techniques (i.e., ((18)O/(16)O and (17)O/(16)O) and (37)Cl/(35)Cl) facilitate the differentiation of naturally occurring perchlorate from anthropogenic perchlorate. At high enough concentrations, perchlorate can inhibit proper function of the thyroid gland. Dietary reference dose (RfD) for perchlorate exposure from both food and water is set at 0.7 μg kg(-1) body weight/day which translates to a drinking water level of 24.5 μg L(-1). Chromatographic techniques (i.e., ion chromatography and liquid chromatography mass spectrometry) can be successfully used to detect trace level of perchlorate in environmental samples. Perchlorate can be effectively removed by wide variety of remediation techniques such as bio-reduction, chemical reduction, adsorption, membrane filtration, ion exchange and electro-reduction. Bio-reduction is appropriate for large scale treatment plants whereas ion exchange is suitable for removing trace level of perchlorate in aqueous medium. The environmental occurrence of perchlorate, toxicity, analytical techniques, removal technologies are presented.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2016.01.109DOI Listing
May 2016

Metal release from serpentine soils in Sri Lanka.

Environ Monit Assess 2014 Jun 26;186(6):3415-29. Epub 2014 Jan 26.

Chemical and Environmental Systems Modeling Research Group, Institute of Fundamental Studies, Kandy, Sri Lanka,

Ultramafic rocks and their related soils (i.e., serpentine soils) are non-anthropogenic sources of metal contamination. Elevated concentrations of metals released from these soils into the surrounding areas and groundwater have ecological-, agricultural-, and human health-related consequences. Here we report the geochemistry of four different serpentine soil localities in Sri Lanka by coupling interpretations garnered from physicochemical properties and chemical extractions. Both Ni and Mn demonstrate appreciable release in water from the Ussangoda soils compared to the other three localities, with Ni and Mn metal release increasing with increasing ionic strengths at all sites. Sequential extraction experiments, utilized to identify "elemental pools," indicate that Mn is mainly associated with oxides/(oxy)hydroxides, whereas Ni and Cr are bound in silicates and spinels. Nickel was the most bioavailable metal compared to Mn and Cr in all four soils, with the highest value observed in the Ussangoda soil at 168 ± 6.40 mg kg(-1) via the 0.01-M CaCl2 extraction. Although Mn is dominantly bound in oxides/(oxy)hydroxides, Mn is widely dispersed with concentrations reaching as high as 391 mg kg(-1) (Yudhaganawa) in the organic fraction and 49 mg kg(-1) (Ussangoda) in the exchangeable fraction. Despite Cr being primarily retained in the residual fraction, the second largest pool of Cr was in the organic matter fraction (693 mg kg(-1) in the Yudhaganawa soil). Overall, our results support that serpentine soils in Sri Lanka offer a highly labile source of metals to the critical zone.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-014-3626-8DOI Listing
June 2014

Cr(VI) Formation related to Cr(III)-muscovite and birnessite interactions in ultramafic environments.

Environ Sci Technol 2013 Sep 16;47(17):9722-9. Epub 2013 Aug 16.

Chemical and Environmental Systems Modeling Research Group, Institute of Fundamental Studies , Hantana Road, Kandy 20000, Sri Lanka.

Chromium is abundantly and primarily present as Cr(III) in ultramafic rocks and serpentine soils. Chromium(III) oxidation involving chromite (FeCr2O4) via interactions with birnessite has been shown to be a major pathway of Cr(VI) production in serpentine soils. Alternatively, Cr(III)-bearing silicates with less Cr(III) may provide higher Cr(VI) production rates compared to relatively insoluble chromite. Of the potential Cr(III)-bearing silicates, Cr(III)-muscovite (i.e., fuchsite) commonly occurs in metamorphosed ultramafic rocks and dissolution rates may be comparable to other common Cr(III)-bearing phyllosilicates and clays. Here, we examine the formation of Cr(VI) related to Cr(III)-muscovite and birnessite (i.e., acid birnessite) interactions with and without humic matter (HM) via batch experiments. Experimentally, the fastest rate of Cr(VI) production involving Cr(III)-muscovite was 3.8 × 10(-1) μM h(-1) (pH 3 without HM). Kinetically, Cr(III)-muscovite provides a major pathway for Cr(VI) formation and Cr(VI) production rates may exceed those involving chromite depending on pH, available mineral surface areas in solution, and the abundance of Cr(III) present. However, when HM is introduced to the system, Cr(VI) production rates decrease by as much as 80%. This highlights that HM strongly decreases but may not completely suppress the formation and mobilization of Cr(VI). A Sri Lankan serpentine soil was utilized to provide context with regards to the experimental results. Despite Cr(VI) in the soil solids and Cr(VI) formation being favorable from Cr(III)-bearing minerals, no detectable Cr(VI) was released into soil solutions potentially due to the abundance of HM. Overall, the dynamic interactions of Cr(III)-bearing silicates and birnessite provide a kinetically favorable route of Cr(VI) formation which is tempered by humic matter.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/es4015025DOI Listing
September 2013

Differentiating biotic from abiotic methane genesis in hydrothermally active planetary surfaces.

Proc Natl Acad Sci U S A 2012 Jun 7;109(25):9750-4. Epub 2012 Jun 7.

Department of Geological Sciences, University of Canterbury, Christchurch 8140, New Zealand.

Molecular hydrogen (H(2)) is derived from the hydrothermal alteration of olivine-rich planetary crust. Abiotic and biotic processes consume H(2) to produce methane (CH(4)); however, the extent of either process is unknown. Here, we assess the temporal dependence and limit of abiotic CH(4) related to the presence and formation of mineral catalysts during olivine hydrolysis (i.e., serpentinization) at 200 °C and 0.03 gigapascal. Results indicate that the rate of CH(4) production increases to a maximum value related to magnetite catalyzation. By identifying the dynamics of CH(4) production, we kinetically model how the H(2) to CH(4) ratio may be used to assess the origin of CH(4) in deep subsurface serpentinization systems on Earth and Mars. Based on our model and available field data, low H(2)/CH(4) ratios (less than approximately 40) indicate that life is likely present and active.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1205223109DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382529PMC
June 2012

Genesis of hexavalent chromium from natural sources in soil and groundwater.

Proc Natl Acad Sci U S A 2007 Apr 9;104(16):6544-9. Epub 2007 Apr 9.

Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305-2115, USA.

Naturally occurring Cr(VI) has recently been reported in ground and surface waters. Rock strata rich in Cr(III)-bearing minerals, in particular chromite, are universally found in these areas that occur near convergent plate margins. Here we report experiments demonstrating accelerated dissolution of chromite and subsequent oxidation of Cr(III) to aqueous Cr(VI) in the presence of birnessite, a common manganese mineral, explaining the generation of Cr(VI) by a Cr(III)-bearing mineral considered geochemically inert. Our results demonstrate that Cr(III) within ultramafic- and serpentinite-derived soils/sediments can be oxidized and dissolved through natural processes, leading to hazardous levels of aqueous Cr(VI) in surface and groundwater.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.0701085104DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1871822PMC
April 2007