Publications by authors named "Christopher D Ivey"

11 Publications

  • Page 1 of 1

Direct and Delayed Mortality of Ceriodaphnia dubia and Rainbow Trout Following Time-Varying Acute Exposures to Zinc.

Environ Toxicol Chem 2021 Sep 20;40(9):2484-2498. Epub 2021 Jul 20.

James Madison University, Harrisonburg, Virginia, USA.

The potential for delayed mortality following short-term episodic pollution events was evaluated by exposing cladocerans (Ceriodaphnia dubia) and rainbow trout (Oncorhynchus mykiss) to zinc (Zn) in various 1- to 48-h and 1- to 96-h exposures, respectively, followed by transferring the exposed organisms to clean water for up to 47 h for C. dubia and up to 95 h for trout for additional observation. For C. dubia, 1-h exposures of up to 3790 µg Zn/L never resulted in mortality during the actual Zn exposures, but by 48 h, a 1-h exposure to 114 µg/L, a concentration similar to the present US national water quality acute criterion for the test water conditions, ultimately killed 70% of C. dubia. With C. dubia, the speed of action of Zn toxicity was faster for intermediate concentrations than for the highest concentrations tested. For rainbow trout, pronounced delayed mortalities by 96 h only occurred following ≥8-h exposures. For both species, ultimate mortalities from Zn exposures ≤8 h mostly presented as delayed mortalities, whereas for exposures ≥24 h, almost all ultimate mortalities presented during the actual exposure periods. With Zn, risks of delayed mortality following exposures to all concentrations tested were much greater for the more sensitive, small-bodied invertebrate (C. dubia) than for the less sensitive, larger-bodied fish (rainbow trout). These results, along with previous studies, show that delayed mortality is an important consideration in evaluating risks to aquatic organisms from brief, episodic exposures to some substances. Environ Toxicol Chem 2021;40:2484-2498. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.5131DOI Listing
September 2021

Acute and Chronic Toxicity of Sodium Nitrate and Sodium Sulfate to Several Freshwater Organisms in Water-Only Exposures.

Environ Toxicol Chem 2020 05 9;39(5):1071-1085. Epub 2020 Apr 9.

Water Quality Branch, US Environmental Protection Agency, Chicago, Illinois, USA.

Elevated nitrate (NO ) and sulfate (SO ) in surface water are of global concern, and studies are needed to generate toxicity data to develop environmental guideline values for NO and SO . The present study was designed to fill existing gaps in toxicity databases by determining the acute and/or chronic toxicity of NO (tested as NaNO ) to a unionid mussel (Lampsilis siliquoidea), a midge (Chironomus dilutus), a fish (rainbow trout, Oncorhynchus mykiss), and 2 amphibians (Hyla versicolor and Lithobates sylvaticus), and to determine the acute and/or chronic toxicity of SO (tested as Na SO ) to 2 unionid mussels (L. siliquoidea and Villosa iris), an amphipod (Hyalella azteca), and 2 fish species (fathead minnow, Pimephales promelas and O. mykiss). Among the different test species, acute NO median effect concentrations (EC50s) ranged from 189 to >883 mg NO -N/L, and chronic NO 20% effect concentrations (EC20s) based on the most sensitive endpoint ranged from 9.6 to 47 mg NO -N/L. The midge was the most sensitive species, and the trout was the least sensitive species in both acute and chronic NO exposures. Acute SO EC50s for the 2 mussel species (2071 and 2064 mg SO /L) were similar to the EC50 for the amphipod (2689 mg SO /L), whereas chronic EC20s for the 2 mussels (438 and 384 mg SO /L) were >2-fold lower than the EC20 of the amphipod (1111 mg SO /L), indicating the high sensitivity of mussels in chronic SO exposures. However, the fathead minnow, with an EC20 of 374 mg SO /L, was the most sensitive species in chronic SO exposures whereas the rainbow trout was the least sensitive species (EC20 > 3240 mg SO /L). The high sensitivity of fathead minnow was consistent with the finding in a previous chronic Na SO study. However, the EC20 values from the present study conducted in test water containing a higher potassium concentration (3 mg K/L) were >2-fold greater than those in the previous study at a lower potassium concentration (1 mg K/L), which confirmed the influence of potassium on chronic Na SO toxicity to the minnow. Environ Toxicol Chem 2020;39:1071-1085. © 2020 SETAC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.4701DOI Listing
May 2020

Sensitivity of Warm-Water Fishes and Rainbow Trout to Selected Contaminants.

Bull Environ Contam Toxicol 2020 Mar 7;104(3):321-326. Epub 2020 Feb 7.

Columbia Environmental Research Center, U.S. Geological Survey, 4200 E. New Haven Rd, Columbia, MO, 65201, USA.

Guidelines for developing water quality standards allow U.S. states to exclude toxicity data for the family Salmonidae (trout and salmon) when deriving guidelines for warm-water habitats. This practice reflects the belief that standards based on salmonid data may be overprotective of toxic effects on other fish taxa. In acute tests with six chemicals and eight fish species, the salmonid, Rainbow Trout (Oncorhynchus mykiss), was the most sensitive species tested with copper, zinc, and sulfate, but warm-water species were most sensitive to nickel, chloride, and ammonia. Overall, warm-water fishes, including sculpins (Cottidae) and sturgeons (Acipenseridae), were about as sensitive as salmonids in acute tests and in limited chronic testing with Lake Sturgeon (Acipenser fulvescens) and Mottled Sculpin (Cottus bairdi). In rankings of published acute values, invertebrate taxa were most sensitive for all six chemicals tested and there was no trend for greater sensitivity of salmonids compared to warm-water fish.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-020-02788-yDOI Listing
March 2020

Influence of Dissolved Organic Carbon on the Acute Toxicity of Copper and Zinc to White Sturgeon (Acipenser transmontanus) and a Cladoceran (Ceriodaphnia dubia).

Environ Toxicol Chem 2019 12 9;38(12):2682-2687. Epub 2019 Nov 9.

Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA.

We conducted acute lethality tests with white sturgeon (Acipenser transmontanus) and Ceriodaphnia dubia exposed to copper and zinc at dissolved organic carbon concentrations ranging from 0.5 to 5.5 mg/L. Dissolved organic carbon had minimal effects on zinc toxicity but did have a protective effect on acute copper toxicity, which was equal to that predicted by the copper biotic ligand model (BLM). The BLM-adjusted copper median effect concentrations for A. transmontanus ranged from 2.4 to 8.2 mg/L. Environ Toxicol Chem 2019;38:2682-2687. Published 2019 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work, and as such, is in the public domain in the United States of America.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.4592DOI Listing
December 2019

Acute toxicity of sodium chloride and potassium chloride to a unionid mussel (Lampsilis siliquoidea) in water exposures.

Environ Toxicol Chem 2018 12 26;37(12):3041-3049. Epub 2018 Jul 26.

US Environmental Protection Agency, Environmental Effects Research Laboratory, Duluth, Minnesota.

Freshwater mussels (order Unionoida) are one of the most imperiled groups of animals in the world. However, many ambient water quality criteria and other environmental guideline values do not include data for freshwater mussels, in part because mussel toxicity test methods are comparatively new and data may not have been available when criteria and guidelines were derived. The objectives of the present study were to evaluate the acute toxicity of sodium chloride (NaCl) and potassium chloride (KCl) to larvae (glochidia) and/or juveniles of a unionid mussel (fatmucket, Lampsilis siliquoidea) and to determine the potential influences of water hardness (50, 100, 200, and 300 mg/L as CaCO ) and other major ions (Ca, K, SO , or HCO ) on the acute toxicity of NaCl to the mussels. From the KCl test, the 50% effect concentration (EC50) for fatmucket glochidia was 30 mg K/L, similar to or slightly lower than the EC50s for juvenile fatmucket (37-46 mg K/L) tested previously in our laboratory. From the NaCl tests, the EC50s for glochidia increased from 441 to 1597 mg Cl/L and the EC50s for juvenile mussels increased from 911 to 3092 mg Cl/L with increasing water hardness from 50 to 300 mg/L. Increasing K from 0.4 to 1.9 mg/L, SO from 13 to 40 mg/L, or HCO from 44 to 200 mg/L in the 50 mg/L hardness water did not substantially change the NaCl EC50s for juvenile mussels, whereas increasing Ca from 9.9 to 42 mg/L increased the EC50s by a factor of 2. The overall results indicate that glochidia were equally or more sensitive to NaCl and KCl compared with juvenile mussels and that the increased water hardness ameliorated the acute toxicity of NaCl to glochidia and juveniles. These responses rank fatmucket among the most acutely sensitive freshwater organisms to NaCl and KCl. Environ Toxicol Chem 2018;37:3041-3049. © 2018 SETAC. This article is a US government work and, as such, is in thepublic domain in the United States of America.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.4206DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693347PMC
December 2018

Toxicity of Chromium (VI) to Two Mussels and an Amphipod in Water-Only Exposures With or Without a Co-stressor of Elevated Temperature, Zinc, or Nitrate.

Arch Environ Contam Toxicol 2017 Apr 25;72(3):449-460. Epub 2017 Feb 25.

Department of Biology, Missouri State University, 901 South National, Springfield, MO, USA.

The objectives of the present study were to develop methods for propagating western pearlshell (Margaritifera falcata) for laboratory toxicity testing and evaluate acute and chronic toxicity of chromium VI [Cr(VI)] to the pearlshell and a commonly tested mussel (fatmucket, Lampsilis siliquoidea at 20 °C or in association with a co-stressor of elevated temperature (27 °C), zinc (50 µg Zn/L), or nitrate (35 mg NO/L). A commonly tested invertebrate (amphipod, Hyalella azteca) also was tested in chronic exposures. Newly transformed pearlshell (~1 week old) were successfully cultured and tested in acute 96 h Cr exposures (control survival 100%). However, the grow-out of juveniles in culture for chronic toxicity testing was less successful and chronic 28-day Cr toxicity tests started with 4 month-old pearlshell failed due to low control survival (39-68%). Acute median effect concentration (EC50) for the pearlshell (919 µg Cr/L) and fatmucket (456 µg Cr/L) tested at 20 °C without a co-stressor decreased by a factor of > 2 at elevated temperature but did not decrease at elevated Zn or elevated NO. Chronic 28-day Cr tests were completed successfully with the fatmucket and amphipod (control survival 83-98%). Chronic maximum acceptable toxicant concentration (MATC) for fatmucket at 20 °C (26 µg Cr/L) decreased by a factor of 2 at elevated temperature or NO but did not decrease at elevated Zn. However, chronic MATC for amphipod at 20 °C (13 µg Cr/L) did not decrease at elevated temperature, Zn, or NO. Acute EC50s for both mussels tested with or without a co-stressor were above the final acute value used to derive United States Environmental Protection Agency acute water quality criterion (WQC) for Cr(VI); however, chronic MATCs for fatmucket at elevated temperature or NO and chronic MATCs for the amphipod at 20 °C with or without elevated Zn or NO were about equal to the chronic WQC. The results indicate that (1) the elevated temperature increased the acute Cr toxicity to both mussel species, (2) fatmucket was acutely more sensitive to Cr than the pearlshell, (3) elevated temperature or NO increased chronic Cr toxicity to fatmucket, and (4) acute WQC are protective of tested mussels with or without a co-stressor; however, the chronic WQC might not protect fatmucket at elevated temperature or NO and might not protect the amphipod at 20 °C with or without elevated Zn or NO.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00244-017-0377-xDOI Listing
April 2017

Acute sensitivity of a broad range of freshwater mussels to chemicals with different modes of toxic action.

Environ Toxicol Chem 2017 03 11;36(3):786-796. Epub 2016 Nov 11.

Department of Biology, Missouri State University, Springfield, Missouri, USA.

Freshwater mussels, one of the most imperiled groups of animals in the world, are generally underrepresented in toxicity databases used for the development of ambient water quality criteria and other environmental guidance values. Acute 96-h toxicity tests were conducted to evaluate the sensitivity of 5 species of juvenile mussels from 2 families and 4 tribes to 10 chemicals (ammonia, metals, major ions, and organic compounds) and to screen 10 additional chemicals (mainly organic compounds) with a commonly tested mussel species, fatmucket (Lampsilis siliquoidea). In the multi-species study, median effect concentrations (EC50s) among the 5 species differed by a factor of ≤2 for chloride, potassium, sulfate, and zinc; a factor of ≤5 for ammonia, chromium, copper, and nickel; and factors of 6 and 12 for metolachlor and alachlor, respectively, indicating that mussels representing different families or tribes had similar sensitivity to most of the tested chemicals, regardless of modes of action. There was a strong linear relationship between EC50s for fatmucket and the other 4 mussel species across the 10 chemicals (r  = 0.97, slope close to 1.0), indicating that fatmucket was similar to other mussel species; thus, this commonly tested species can be a good surrogate for protecting other mussels in acute exposures. The sensitivity of juvenile fatmucket among different populations or cultured from larvae of wild adults and captive-cultured adults was also similar in acute exposures to copper or chloride, indicating captive-cultured adult mussels can reliably be used to reproduce juveniles for toxicity testing. In compiled databases for all freshwater species, 1 or more mussel species were among the 4 most sensitive species for alachlor, ammonia, chloride, potassium, sulfate, copper, nickel, and zinc; therefore, the development of water quality criteria and other environmental guidance values for these chemicals should reflect the sensitivity of mussels. In contrast, the EC50s of fatmucket tested in the single-species study were in the high percentiles (>75th) of species sensitivity distributions for 6 of 7 organic chemicals, indicating mussels might be relatively insensitive to organic chemicals in acute exposures. Environ Toxicol Chem 2017;36:786-796. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.3642DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220997PMC
March 2017

Sensitivity of early life stages of freshwater mussels (Unionidae) to acute and chronic toxicity of lead, cadmium, and zinc in water.

Environ Toxicol Chem 2010 Sep;29(9):2053-63

U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Road, Columbia, Missouri 65201, USA.

Toxicity of lead, cadmium, or zinc to early life stages of freshwater mussels (fatmucket, Lampsilis siliquoidea; Neosho mucket, L. rafinesqueana) was evaluated in 48-h exposures with mussel larvae (glochidia), in 96-h exposures with newly transformed (5-d-old) and two- or six-month-old juvenile mussels, or in 28-d exposures with two- or four-month-old mussels in reconstituted soft water. The 24-h median effect concentrations (EC50s) for fatmucket glochidia (>299 microg Pb/L, >227 microg Cd/L, 2,685 microg Zn/L) and 96-h EC50s for two- or six-month-old fatmucket (>426 microg Pb/L, 199 microg Cd/L, 1,700 microg Zn/L) were much higher than 96-h EC50s for newly transformed fatmucket (142 and 298 microg Pb/L, 16 microg Cd/L, 151 and 175 microg Zn/L) and Neosho mucket (188 microg Pb/L, 20 microg Cd/L, 145 microg Zn/L). Chronic values for fatmucket were 10 microg Pb/L, 6.0 microg Cd/L, and 63 and 68 microg Zn/L. When mussel data from the present study and the literature were included in updated databases for deriving U.S. Environmental Protection Agency water quality criteria, mussel genus mean acute values were in the lower percentiles of the sensitivity distribution of all freshwater species for Pb (the 26th percentile), Cd (the 15th to 29th percentile), or Zn (the 12th to 21st percentile). The mussel (Lampsilis) genus mean chronic value was the lowest value ever reported for Pb (the 9th percentile) but was near the middle of the sensitivity distribution for Cd (the 61st percentile) or Zn (the 44th percentile). These results indicate that mussels were relatively sensitive to the acute toxicity of these three metals and to the chronic toxicity of Pb, but were moderately sensitive to the chronic toxicity of Cd or Zn compared to other freshwater species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.250DOI Listing
September 2010

Influence of pH on the acute toxicity of ammonia to juvenile freshwater mussels (fatmucket, Lampsilis siliquoidea).

Environ Toxicol Chem 2008 May;27(5):1141-6

Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA.

The objective of the present study was to evaluate the influence of pH on the toxicity of ammonia to juvenile freshwater mussels. Acute 96-h ammonia toxicity tests were conducted with 10-d-old juvenile mussels (fatmucket, Lampsilis siliquoidea) at five pH levels ranging from 6.5 to 9.0 in flow-through diluter systems at 20 degrees C. Acute 48-h tests with amphipods (Hyalella azteca) and 96-h tests with oligochaetes (Lumbriculus variegatus) were conducted concurrently under the same test conditions to determine the sensitivity of mussels relative to these two commonly tested benthic invertebrate species. During the exposure, pH levels were maintained within 0.1 of a pH unit and ammonia concentrations were relatively constant through time (coefficient of variation for ammonia concentrations ranged from 2 to 30% with a median value of 7.9%). The median effective concentrations (EC50s) of total ammonia nitrogen (N) for mussels were at least two to six times lower than the EC50s for amphipods and oligochaetes, and the EC50s for mussels decreased with increasing pH and ranged from 88 mg N/L at pH 6.6 to 0.96 mg N/L at pH 9.0. The EC50s for mussels were at or below the final acute values used to derive the U.S. Environmental Protection Agency's acute water quality criterion (WQC). However, the quantitative relationship between pH and ammonia toxicity to juvenile mussels was similar to the average relationship for other taxa reported in the WQC. These results indicate that including mussel toxicity data in a revision to the WQC would lower the acute criterion but not change the WQC mathematical representation of the relative effect of pH on ammonia toxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1897/07-193.1DOI Listing
May 2008

Chronic toxicity of copper and ammonia to juvenile freshwater mussels (Unionidae).

Environ Toxicol Chem 2007 Oct;26(10):2048-56

Columbia Environmental Research Center, U.S. Geological Survey, Columbia, Missouri 65201, USA.

The objectives of the present study were to develop methods for conducting chronic toxicity tests with juvenile mussels under flow-through conditions and to determine the chronic toxicity of copper and ammonia to juvenile mussels using these methods. In two feeding tests, two-month-old fatmucket (Lampsilis siliquoidea) and rainbow mussel (Villosa iris) were fed various live algae or nonviable algal mixture for 28 d. The algal mixture was the best food resulting in high survival (>or=90%) and growth. Multiple copper and ammonia toxicity tests were conducted for 28 d starting with two-month-old mussels. Six toxicity tests using the algal mixture were successfully completed with a control survival of 88 to 100%. Among copper tests with rainbow mussel, fatmucket, and oyster mussel (Epioblasma capsaeformis), chronic value ([ChV], geometric mean of the no-observed-effect concentration and the lowest-observed-effect concentration) ranged from 8.5 to 9.8 microg Cu/L for survival and from 4.6 to 8.5 microg Cu/L for growth. Among ammonia tests with rainbow mussel, fatmucket, and wavy-rayed lampmussel (L. fasciola), the ChV ranged from 0.37 to 1.2 mg total ammonia N/L for survival and from 0.37 to 0.67 mg N/L for growth. These ChVs were below the U.S. Environmental Protection Agency 1996 chronic water quality criterion (WQC) for copper (15 microg/L; hardness 170 mg/L) and 1999 WQC for total ammonia (1.26 mg N/L; pH 8.2 and 20 degrees C). Results indicate that toxicity tests with two-month-old mussels can be conducted for 28 d with >80% control survival; growth was frequently a more sensitive endpoint compared to survival; and the 1996 chronic WQC for copper and the 1999 chronic WQC for total ammonia might not be adequately protective of the mussel species tested. However, a recently revised 2007 chronic WQC for copper based on the biotic ligand model may be more protective in the water tested.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1897/06-524R.1DOI Listing
October 2007

Acute toxicity of copper, ammonia, and chlorine to glochidia and juveniles of freshwater mussels (Unionidae).

Environ Toxicol Chem 2007 Oct;26(10):2036-47

Columbia Environmental Research Center, U.S. Geological Survey, Columbia, Missouri 65201, USA.

The objective of the present study was to determine acute toxicity of copper, ammonia, or chlorine to larval (glochidia) and juvenile mussels using the recently published American Society for Testing and Materials (ASTM) Standard guide for conducting laboratory toxicity tests with freshwater mussels. Toxicity tests were conducted with glochidia (24- to 48-h exposures) and juveniles (96-h exposures) of up to 11 mussel species in reconstituted ASTM hard water using copper, ammonia, or chlorine as a toxicant. Copper and ammonia tests also were conducted with five commonly tested species, including cladocerans (Daphnia magna and Ceriodaphnia dubia; 48-h exposures), amphipod (Hyalella azteca; 48-h exposures), rainbow trout (Oncorhynchus mykiss; 96-h exposures), and fathead minnow (Pimephales promelas; 96-h exposures). Median effective concentrations (EC50s) for commonly tested species were >58 microg Cu/L (except 15 microg Cu/L for C. dubia) and >13 mg total ammonia N/L, whereas the EC50s for mussels in most cases were <45 microg Cu/L or <12 mg N/L and were often at or below the final acute values (FAVs) used to derive the U.S. Environmental Protection Agency 1996 acute water quality criterion (WQC) for copper and 1999 acute WQC for ammonia. However, the chlorine EC50s for mussels generally were >40 microg/L and above the FAV in the WQC for chlorine. The results indicate that the early life stages of mussels generally were more sensitive to copper and ammonia than other organisms and that, including mussel toxicity data in a revision to the WQC, would lower the WQC for copper or ammonia. Furthermore, including additional mussel data in 2007 WQC for copper based on biotic ligand model would further lower the WQC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1897/06-523R.1DOI Listing
October 2007
-->