Publications by authors named "Christian Wiencke"

21 Publications

  • Page 1 of 1

Increased pCO and temperature reveal ecotypic differences in growth and photosynthetic performance of temperate and Arctic populations of Saccharina latissima.

Planta 2017 Jan 21;245(1):119-136. Epub 2016 Sep 21.

Department of Ecology, Faculty of Sciences, University of Malaga, Bulevar Louis Pasteur s/n, 29010, Malaga, Spain.

Main Conclusion: The Arctic population of the kelp Saccharina latissima differs from the Helgoland population in its sensitivity to changing temperature and CO levels. The Arctic population does more likely benefit from the upcoming environmental scenario than its Atlantic counterpart. The previous research demonstrated that warming and ocean acidification (OA) affect the biochemical composition of Arctic (Spitsbergen; SP) and cold-temperate (Helgoland; HL) Saccharina latissima differently, suggesting ecotypic differentiation. This study analyses the responses to different partial pressures of CO (380, 800, and 1500 µatm pCO) and temperature levels (SP population: 4, 10 °C; HL population: 10, 17 °C) on the photophysiology (O production, pigment composition, D1-protein content) and carbon assimilation [Rubisco content, carbon concentrating mechanisms (CCMs), growth rate] of both ecotypes. Elevated temperatures stimulated O production in both populations, and also led to an increase in pigment content and a deactivation of CCMs, as indicated by C isotopic discrimination of algal biomass (ε ) in the HL population, which was not observed in SP thalli. In general, pCO effects were less pronounced than temperature effects. High pCO deactivated CCMs in both populations and produced a decrease in the Rubisco content of HL thalli, while it was unaltered in SP population. As a result, the growth rate of the Arctic ecotype increased at elevated pCO and higher temperatures and it remained unchanged in the HL population. Ecotypic differentiation was revealed by a significantly higher O production rate and an increase in Chl a, Rubisco, and D1 protein content in SP thalli, but a lower growth rate, in comparison to the HL population. We conclude that both populations differ in their sensitivity to changing temperatures and OA and that the Arctic population is more likely to benefit from the upcoming environmental scenario than its Atlantic counterpart.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-016-2594-3DOI Listing
January 2017

Temperature and light interactively modulate gene expression in Saccharina latissima (Phaeophyceae).

J Phycol 2015 Feb 8;51(1):93-108. Epub 2015 Jan 8.

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570, Bremerhaven, Germany.

Macroalgae of the order Laminariales (kelp) are important components of cold-temperate coastal ecosystems. Major factors influencing their distribution are light (including UV radiation) and temperature. Therefore, future global environmental changes potentially will impact their zonation, distribution patterns, and primary productivity. Many physiological studies were performed on UV radiation and temperature stress in kelp but combinatory effects have not been analyzed and so far no study is available on the molecular processes involved in acclimation to these stresses. Therefore, sporophytes of Saccharina latissima were exposed for 2 weeks to 12 combinations of photosynthetically active radiation (PAR), UV radiation and temperature. Subsequently, microarray hybridizations were performed to determine changes in gene expression patterns. Several effects on the transcriptome were observed after exposure experiments. The strongest effect of temperature on gene expression was observed at 2°C. Furthermore, UV radiation had stronger effects on gene expression than high PAR, and caused stronger induction genes correlated with categories such as photosynthetic components and vitamin B6 biosynthesis. Higher temperatures ameliorated the negative effects of UV radiation in S. latissima. Regulation of reactive oxygen species (ROS) scavenging seems to work in a compartment specific way. Gene expression profiles of ROS scavengers indicated a high amount of oxidative stress in response to the 2°C condition as well as to excessive light at 12°C. Interestingly, stress levels that did not lead to physiological alterations already caused by a transcriptomic response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpy.12255DOI Listing
February 2015

Ocean acidification modulates the response of two Arctic kelps to ultraviolet radiation.

J Plant Physiol 2015 Jan 5;173:41-50. Epub 2014 Oct 5.

Departamento de Ecología, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur s/n, 29010 Málaga, Spain.

The combined effects of ocean acidification and ultraviolet radiation (UVR) have been studied in the kelps Alaria esculenta and Saccharina latissima from Kongsfjorden (Svalbard), two major components of the Arctic macroalgal community, in order to assess their potential to thrive in a changing environment. Overall results revealed synergistic effects, however with a different amplitude in the respective species. Changes in growth, internal N, C:N ratio, pigments, optimum quantum yield (Fv/Fm) and electron transport rates (ETR) following CO2 enrichment and/or UVR were generally more pronounced in S. latissima than in A. esculenta. The highest growth rates were recorded under simultaneous CO2 enrichment and UVR in both species. UVR-mediated changes in pigment content were partially prevented under elevated CO2 in both species. Similarly, UVR led to increased photosynthetic efficiency (α) and ETR only if CO2 was not elevated in A. esculenta and even under high CO2 in S. latissima. Increased CO2 did not inhibit external carbonic anhydrase (eCA) activity in the short-term but in the mid-term, indicating a control through acclimation of photosynthesis rather than a direct inhibition of eCA by CO2. The higher benefit of simultaneous CO2 enrichment and UVR for S. latissima respect to A. esculenta seems to involve higher C and N assimilation efficiency, as well as higher ETR, despite a more sensitive Fv/Fm. The differential responses shown by these two species indicate that ongoing ocean acidification and UVR could potentially change the dominance at lower depths (4-6m), which will eventually drive changes at the community level in the Arctic coastal ecosystem. These results support an existing consideration of S. latissima as a winner species in the global change scenario.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2014.09.008DOI Listing
January 2015

Biochemical composition of temperate and Arctic populations of Saccharina latissima after exposure to increased pCO2 and temperature reveals ecotypic variation.

Planta 2014 Dec 26;240(6):1213-24. Epub 2014 Aug 26.

Department of Functional Ecology, Alfred-Wegener-Institute, Helmholtz Center for Marine and Polar Research, Am Handelshafen 12, 27570, Bremerhaven, Germany,

Previous research suggested that the polar and temperate populations of the kelp Saccharina latissima represent different ecotypes. The ecotypic differentiation might also be reflected in their biochemical composition (BC) under changing temperatures and pCO2. Accordingly, it was tested if the BC of Arctic (Spitsbergen) and temperate S. latissima (Helgoland) is different and if they are differently affected by changes in temperature and pCO2. Thalli from Helgoland grown at 17 °C and 10 °C and from Spitsbergen at 10 °C and 4 °C were all tested at either 380, 800, or 1,500 µatm pCO2, and total C-, total N-, protein, soluble carbohydrate, and lipid content, as well as C/N-ratio were measured. At 10 °C, the Arctic population had a higher content of total C, soluble carbohydrates, and lipids, whereas the N- and protein content was lower. At the lower tested temperature, the Arctic ecotype had particularly higher contents of lipids, while content of soluble carbohydrates increased in the Helgoland population only. In Helgoland-thalli, elevated pCO2 caused a higher content of soluble carbohydrates at 17 °C but lowered the content of N and lipids and increased the C/N-ratio at 10 °C. Elevated pCO2 alone did not affect the BC of the Spitsbergen population. Conclusively, the Arctic ecotype was more resilient to increased pCO2 than the temperate one, and both ecotypes differed in their response pattern to temperature. This differential pattern is discussed in the context of the adaptation of the Arctic ecotype to low temperature and the polar night.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-014-2143-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228115PMC
December 2014

Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta).

J Exp Bot 2013 Dec 14;64(18):5587-97. Epub 2013 Oct 14.

Alfred Wegener Institute for Polar and Marine Research, Section of Functional Ecology, Department of Seaweed Biology, Am Handelshafen 12, D-27570 Bremerhaven, Germany.

This study aimed to examine interactive effects between ocean acidification and temperature on the photosynthetic and growth performance of Neosiphonia harveyi. N. harveyi was cultivated at 10 and 17.5 °C at present (~380 µatm), expected future (~800 µatm), and high (~1500 µatm) pCO2. Chlorophyll a fluorescence, net photosynthesis, and growth were measured. The state of the carbon-concentrating mechanism (CCM) was examined by pH-drift experiments (with algae cultivated at 10 °C only) using ethoxyzolamide, an inhibitor of external and internal carbonic anhydrases (exCA and intCA, respectively). Furthermore, the inhibitory effect of acetazolamide (an inhibitor of exCA) and Tris (an inhibitor of the acidification of the diffusive boundary layer) on net photosynthesis was measured at both temperatures. Temperature affected photosynthesis (in terms of photosynthetic efficiency, light saturation point, and net photosynthesis) and growth at present pCO2, but these effects decreased with increasing pCO2. The relevance of the CCM decreased at 10 °C. A pCO2 effect on the CCM could only be shown if intCA and exCA were inhibited. The experiments demonstrate for the first time interactions between ocean acidification and temperature on the performance of a non-calcifying macroalga and show that the effects of low temperature on photosynthesis can be alleviated by increasing pCO2. The findings indicate that the carbon acquisition mediated by exCA and acidification of the diffusive boundary layer decrease at low temperatures but are not affected by the cultivation level of pCO2, whereas the activity of intCA is affected by pCO2. Ecologically, the findings suggest that ocean acidification might affect the biogeographical distribution of N. harveyi.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/ert329DOI Listing
December 2013

Transcriptomic analysis of acclimation to temperature and light stress in Saccharina latissima (Phaeophyceae).

PLoS One 2012 28;7(8):e44342. Epub 2012 Aug 28.

Department of Functional Ecology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.

Kelps, brown algae of the order Laminariales, dominate rocky shores and form huge kelp beds which provide habitat and nurseries for various marine organisms. Whereas the basic physiological and ecophysiological characteristics of kelps are well studied, the molecular processes underlying acclimation to different light and temperature conditions are still poorly understood. Therefore we investigated the molecular mechanisms underlying the physiological acclimation to light and temperature stress. Sporophytes of S. latissima were exposed to combinations of light intensities and temperatures, and microarray hybridizations were performed to determine changes in gene expression patterns. This first large-scale transcriptomic study of a kelp species shows that S. latissima responds to temperature and light stress with a multitude of transcriptional changes: up to 32% of genes showed an altered expression after the exposure experiments. High temperature had stronger effects on gene expression in S. latissima than low temperature, reflected by the higher number of temperature-responsive genes. We gained insights into underlying molecular processes of acclimation, which includes adjustment of the primary metabolism as well as induction of several ROS scavengers and a sophisticated regulation of Hsps. We show that S. latissima, as a cold adapted species, must make stronger efforts for acclimating to high than to low temperatures. The strongest response was caused by the combination of high temperatures with high light intensities, which proved most harmful for the alga.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0044342PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429442PMC
February 2013

Phlorotannin production and lipid oxidation as a potential protective function against high photosynthetically active and UV radiation in gametophytes of Alaria esculenta (Alariales, Phaeophyceae).

Photochem Photobiol 2012 Jan-Feb;88(1):46-57. Epub 2011 Nov 3.

Department of Marine Botany, University of Bremen, Bremen, Germany.

Radiation damage can inter alia result in lipid peroxidation of macroalgal cell membranes. To prevent photo-oxidation within the cells, photoprotective substances such as phlorotannins are synthesized. In the present study, changes in total fatty acids (FA), FA composition and intra/extracellular phlorotannin contents were determined by gas chromatography and the Folin-Ciocalteu method to investigate the photoprotective potential of phlorotannins to prevent lipid peroxidation. Alaria esculenta juveniles (Phaeophyceae) were exposed over 20 days to high/low photosynthetically active radiation (PAR) in combination with UV radiation (UVR) in the treatments: PAB (low/high PAR + UV-B + UV-A), PA (low/high PAR + UV-A) or low/high PAR only. While extracellular phlorotannins increased after 10 days, intracellular phlorotannins increased with exposure time and PA and decreased under PAB. Interactive effects of time:radiation wavebands, time:PAR dose as well as radiation wavebands:PAR dose were observed. Low FA contents were detected in the PA and PAB treatments; interactive effects were observed between time:high PAR and PAB:high PAR. Total FA contents were correlated to extra/intracellular phlorotannin contents. Our results suggest that phlorotannins might play a role in intra/extracellular protection by absorption and oxidation processes. Changes in FA content/composition upon UVR and high PAR might be considered as an adaptive mechanism of the A. esculenta juveniles subjected to variations in solar irradiance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1751-1097.2011.01004.xDOI Listing
April 2012

SPOROGENESIS UNDER ULTRAVIOLET RADIATION IN LAMINARIA DIGITATA (PHAEOPHYCEAE) REVEALS PROTECTION OF PHOTOSENSITIVE MEIOSPORES WITHIN SORAL TISSUE: PHYSIOLOGICAL AND ANATOMICAL EVIDENCE.

J Phycol 2011 Jun 4;47(3):603-614. Epub 2011 May 4.

Biologische Anstalt Helgoland, Alfred Wegener Institute for Polar and Marine Research, 27498 Helgoland, GermanySection Functional Ecology, Department Seaweed Biology, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, GermanyBiozentrum Klein Flottbek, University of Hamburg, Ohnhorst-Str. 18, 22609 Hamburg, GermanySection Functional Ecology, Department Seaweed Biology, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.

To study the effect of different radiation conditions on sporogenesis of Laminaria digitata (Huds.) J. V. Lamour., excised disks were induced to form sporangia under PAR (P), PAR + ultraviolet-A (UVA) (PA), and PAR + UVA + ultraviolet-B (UVB) (PAB) conditions in the laboratory. Vitality of meiospores, released from sori induced under different radiation conditions in the laboratory and from sori of wild sporophytes acclimated to in situ solar radiation in the presence and absence of ultraviolet radiation (UVR), was measured in terms of their germination capacity. Sorus induction in disks of laboratory-grown sporophytes was not hampered under light supplemented with UVR, and sorus area was not significantly different among P, PA, and PAB. Vitality and germination rate of meiospores released from sori induced under different radiation treatments was comparable. Likewise, screening of UVR of the natural solar radiation did not promote higher germination rates of meiospores released from wild sporophytes. Germination rates were, however, higher in meiospores released from laboratory-induced sori compared to sori of wild sporophytes. Higher DNA damage (formation of cyclobutane pyrimidine dimers, CPDs) was observed in laboratory-grown nonsorus compared to sorus tissue, while CPDs were nondetectable in both sorus and nonsorus tissue of wild sporophytes. To explain the apparent protection of developing meiospores and the unexpected UV resistance of soral tissue, concurrent anatomical investigations of sporogenic tissue were performed. We observed the previously unreported existence of two types of sterile paraphysis cells. One type of paraphysis cells, the most frequent type, contained several red-fluorescing plastids. The other type, less frequently occurring, was completely filled with substances emitting blue fluorescence under violet excitation, presumably brown algal phenolic compounds (phlorotannins). Cells of this type were irregularly scattered within the sorus and did not contain red-fluorescing plastids. Meiospore-containing sporangia were positioned embedded between both types of paraphysis cells. In vegetative tissue, blue autofluorescence was observed only in injured parts of the blade. Results of our study suggest that the sorus structure with phlorotannins localized in the specialized paraphysis cells may be able to screen harmful UVR and protect UV-sensitive meiospores inside the sporangia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1529-8817.2011.00998.xDOI Listing
June 2011

SENSITIVITY OF ANTARCTIC UROSPORA PENICILLIFORMIS (ULOTRICHALES, CHLOROPHYTA) TO ULTRAVIOLET RADIATION IS LIFE-STAGE DEPENDENT(1).

J Phycol 2009 Jun 1;45(3):600-9. Epub 2009 Jun 1.

Institute for Polar Ecology, Wischhofstraße 1-3, Bldg. 12, D-24148 Kiel, GermanyCONICET, Instituto Antártico Argentino, Cerrito 1248 (C1010AAZ), CA de Buenos Aires, ArgentinaSection Functional Ecology, Department Seaweed Biology, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, GermanyBiozentrum Klein Flottbek, University of Hamburg, Ohnhorst-Str. 18, D-22609 Hamburg, GermanyInstituto Antártico Argentino, Cerrito 1248 (C1010AAZ), CA de Buenos Aires, ArgentinaDepartment of Marine Ecology, Marine Botany, Gothenburg University, Box 461, SE 40530 Gothenburg, Sweden.

The sensitivity of different life stages of the eulittoral green alga Urospora penicilliformis (Roth) Aresch. to ultraviolet radiation (UVR) was examined in the laboratory. Gametophytic filaments and propagules (zoospores and gametes) released from filaments were separately exposed to different fluence of radiation treatments consisting of PAR (P = 400-700 nm), PAR + ultraviolet A (UVA) (PA, UVA = 320-400 nm), and PAR + UVA + ultraviolet B (UVB) (PAB, UVB = 280-320 nm). Photophysiological indices (ETRmax , Ek , and α) derived from rapid light curves were measured in controls, while photosynthetic efficiency and amount of DNA lesions in terms of cyclobutane pyrimidine dimers (CPDs) were measured after exposure to radiation treatments and after recovery in low PAR; pigments of propagules were quantified after exposure treatment only. The photosynthetic conversion efficiency (α) and photosynthetic capacity (rETRmax ) were higher in gametophytes compared with the propagules. The propagules were slightly more sensitive to UVB-induced DNA damage; however, both life stages of the eulittoral inhabiting turf alga were not severely affected by the negative impacts of UVR. Exposure to a maximum of 8 h UVR caused mild effects on the photochemical efficiency of PSII and induced minimal DNA lesions in both the gametophytes and propagules. Pigment concentrations were not significantly different between PAR-exposed and PAR + UVR-exposed propagules. Our data showed that U. penicilliformis from the Antarctic is rather insensitive to the applied UVR. This amphi-equatorial species possesses different protective mechanisms that can cope with high UVR in cold-temperate waters of both hemispheres and in polar regions under conditions of increasing UVR as a consequence of further reduction of stratospheric ozone.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1529-8817.2009.00691.xDOI Listing
June 2009

Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae).

Oecologia 2009 Jun 29;160(3):483-92. Epub 2009 Mar 29.

Department of Marine Botany, University of Bremen, Bremen, Germany.

To estimate the potential effects of climate change on polar marine macroalgae, studies on interactive stress effects of multiple climate-related parameters are essential. Interactions of temperature, radiation and salinity on two different life history stages of Alaria esculenta (L.) Greville from the Kongsfjord (Spitsbergen) were investigated for the first time within this study. Adult macroscopic sporophytes of A. esculenta were exposed to different temperatures between 4 and 21 degrees C combined with artificial irradiation conditions [photosynthetically active radiation, ultraviolet (UV) radiation: UV-A/UV-B, first experiment] and with different salinities [34, 28, 20 practical salinity units (p.s.u.) second experiment]. Effects of photosynthetic activity were determined by measuring variable chlorophyll fluorescence of photosystem II. Germination success of young microscopic zoospores of A. esculenta was studied under multifactorial stress. Zoospore suspensions were exposed to the three different salinities and irradiation conditions at four temperatures between 2 and 16 degrees C. Overall, A. esculenta exhibited a highly stage-specific susceptibility towards the experimental treatments. In both experiments using sporophytes, photosynthetic activity showed significant temperature effects and only very few significant radiation and salinity effects. Microscopic stages of A. esculenta were shown to be more sensitive than the adult macroscopic stages, since germination capacity of zoospores was significantly affected by temperature and salinity changes, and interactions of both. These results suggest that multiple stress factors interact synergistically. Temperature seems to be a predominant environmental parameter for the kelp A. esculenta. Overall, A. esculenta proved to be relatively tolerant and adaptable to increasing temperature and UV radiation, as well as to diluted salinities, but only up to a specific limit.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-009-1326-9DOI Listing
June 2009

Physiological, biochemical, and ultrastructural responses of the green macroalga Urospora penicilliformis from Arctic Spitsbergen to UV radiation.

Protoplasma 2010 Jul 19;243(1-4):105-16. Epub 2009 Mar 19.

Institute for Polar Ecology, University of Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany.

Exposure of the filamentous turf green alga Urospora penicilliformis to ambient and artificial ultraviolet radiation (UVR) revealed a considerable resilient species. This explains the ability of this alga to thrive in the middle-upper intertidal zones of the Arctic sea where it is periodically exposed to environmental extremes. A transient UVR effect on photosynthesis under photosynthetically active radiation (PAR) + UV-A and PAR + UV-A + UV-B was found, but dynamic recovery of photoinhibition was observed immediately after reduction of the photon fluence rate of PAR in the absence or presence of background UVR under laboratory and natural solar radiation, respectively. Chlorophylls, carotenoids, and xanthophyll cycle pigments (violaxanthin, antheraxanthin, and zeaxanthin) concentrations were not significantly different between freshly collected samples and filaments exposed to additional laboratory radiation treatment. The ultrastructure of the U. penicilliformis gametophytes showed that the cells are well adapted to UVR. No significant ultrastructural alterations were observed in filaments exposed to different spectral irradiance in the laboratory compared to in situ acclimated specimen. The antioxidant alpha-tocopherol was detected in minute quantity while the search for flavonoid-like compounds was negative. Other UV screening strategies or certain genetically fixed physiological protective mechanism could be operating in this species responsible for their occurrence in higher shoreline and ecological success. Further molecular and biochemical studies are needed to elucidate the stress resistance in this turf alga. There is an indication that the extremely thick cell wall of U. penicilliformis gametophytes covered with mucilage sheath and dense layer of mineral depositions may provide a shield against unfavorable environmental conditions in general and against UVR in particular.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00709-009-0037-8DOI Listing
July 2010

Zoospores of three Arctic laminariales under different UV radiation and temperature conditions: exceptional spectral absorbance properties and lack of phlorotannin induction.

Photochem Photobiol 2009 Jul-Aug;85(4):970-7. Epub 2009 Jan 23.

Section Seaweed Biology, Alfred Wegener Institute for Marine and Polar Research, Bremerhaven, Germany.

Phlorotannins have often been considered to act as UV-protective compounds in zoospores of brown algae. However, only the absorption characteristics of zoospores under UV exposure have been determined and no data are available on the actual content of phlorotannins or on temperature-UV interactions. Therefore, we determined the absorbance spectra and the phlorotannin contents in zoospore suspensions of three Arctic species (Saccharina latissima, Laminaria digitata, Alaria esculenta), and in the media surrounding zoospores after exposure to different radiation (400-700, 320-700, 295-700 nm) and temperature (2-18 degrees C) conditions for 8 h. Absorption typical of phlorotannins with a maximum at 276 nm was monitored in zoospore suspensions as well as in the media surrounding zoospores, but the results depended strongly on radiation treatments and on zoospore densities. Surprisingly, the content of UV-absorbing phlorotannins subsequent to different exposures did not change in any of the three species. The observed exceptional absorption properties could, therefore, not be related to phlorotannin contents. These findings are discussed in light of a strong phlorotannin investment from sporophytes during spore release and a minor UV-protective role of phlorotannins for zoospores of Arctic kelp species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1751-1097.2008.00515.xDOI Listing
September 2009

Sensitivity of the early life stages of macroalgae from the Northern Hemisphere to ultraviolet radiation.

Photochem Photobiol 2007 Jul-Aug;83(4):851-62

Biologische Anstalt Helgoland, Alfred Wegener Institute for Polar and Marine Research, Marine Station, Helgoland, Germany.

The reproductive cells of macroalgae are regarded as the life history stages most susceptible to various environmental stresses, including UV radiation (UVR). UVR is proposed to determine the upper depth distribution limit of macroalgae on the shore. These hypotheses were tested by UV-exposure experiments, using spores and young thalli of the eulittoral Rhodophyceae Mastocarpus stellatus and Chondrus crispus and various sublittoral brown macroalgae (Phaeophyceae) with different depth distribution from Helgoland (German Bight) and Spitsbergen (Arctic). In spores, the degree of UV-induced inhibition of photosynthesis is lower in eulittoral species and higher in sublittoral species. After UV stress, recovery of photosynthetic capacity is faster in eulittoral compared to sublittoral species. DNA damage is lowest while repair of DNA damage is highest in eulittoral compared to sublittoral species. When the negative impact of UVR prevails, spore germination is inhibited. This is observed in deep water kelp species whereas the same UVR doses do not inhibit germination of shallow water kelp species. A potential acclimation mechanism to increase UV tolerance of brown algal spores is the species-specific ability to increase the content of UV-absorbing phlorotannins in response to UV-exposure. Growth rates of young Mastocarpus and Chondrus gametophytes exposed to experimental doses of UVR are not affected while growth rates of all young kelp sporophytes exposed to UVR are significantly lowered. Furthermore, morphological UV damage in Laminaria ochroleuca includes tissue deformation, lesion, blistering and thickening of the meristematic part of the lamina. The sensitivity of young sporophytes to DNA damage is correlated with thallus thickness and their optical characteristics. Growth rate is an integrative parameter of all physiological processes in juvenile plants. UV inhibition of growth may affect the upper distribution depth limit of adult life history stages. Juveniles possess several mechanisms to minimize UVR damage and, hence, are less sensitive but at the expense of growth. The species-specific susceptibility of the early life stages of macroalgae to UVR plays an important role for the determination of zonation patterns and probably also for shaping up community structure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1562/2006-08-17-IR-1005DOI Listing
November 2007

UV effects on photosynthesis and DNA in propagules of three Antarctic seaweeds (Adenocystis utricularis, Monostroma hariotii and Porphyra endiviifolium).

Planta 2007 May 14;225(6):1505-16. Epub 2006 Dec 14.

Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.

Ozone depletion is highest during spring and summer in Antarctica, coinciding with the seasonal reproduction of most macroalgae. Propagules are the life-stage of an alga most susceptible to environmental perturbations therefore, reproductive cells of three intertidal macroalgal species Adenocystis utricularis (Bory) Skottsberg, Monostroma hariotii Gain, and Porphyra endiviifolium (A and E Gepp) Chamberlain were exposed to photosynthetically active radiation (PAR), PAR + UV-A and PAR + UV-A + UV-B radiation in the laboratory. During 1, 2, 4, and 8 h of exposure and after 48 h of recovery, photosynthetic efficiency, and DNA damage were determined. Saturation irradiance of freshly released propagules varied between 33 and 83 mumol photons m(-2) s(-1) with lowest values in P. endiviifolium and highest values in M. hariotii. Exposure to 22 mumol photons m(-2) s(-1 )PAR significantly reduced photosynthetic efficiency in P. endiviifolium and M. hariotii, but not in A. utricularis. UV radiation (UVR) further decreased the photosynthetic efficiency in all species but all propagules recovered completely after 48 h. DNA damage was minimal or not existing. Repeated exposure of A. utricularis spores to 4 h of UVR daily did not show any acclimation of photosynthesis to UVR but fully recovered after 20 h. UVR effects on photosynthesis are shown to be species-specific. Among the tested species, A. utricularis propagules were the most light adapted. Propagules obviously possess good repair and protective mechanisms. Our study indicates that the applied UV dose has no long-lasting negative effects on the propagules, a precondition for the ecological success of macroalgal species in the intertidal.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-006-0436-4DOI Listing
May 2007

Impact of ultraviolet radiation on cell structure, UV-absorbing compounds, photosynthesis, DNA damage, and germination in zoospores of Arctic Saccorhiza dermatodea.

J Exp Bot 2006 18;57(14):3847-56. Epub 2006 Oct 18.

Biologische Anstalt Helgoland, Alfred Wegener Institute for Polar and Marine Research, Marine Station, Postfach 180, D-27483 Helgoland, Germany.

Stratospheric ozone depletion leads to enhanced UV-B radiation. Therefore, the capacity of reproductive cells to cope with different spectral irradiance was investigated in the laboratory. Zoospores of the upper sublittoral kelp Saccorhiza dermatodea were exposed to varying fluence of spectral irradiance consisting of photosynthetically active radiation (PAR, 400-700 nm; =P), PAR+UV-A radiation (UV-A, 320-400 nm; =PA), and PAR+UV-A+UV-B radiation (UV-B, 280-320 nm; =PAB). Structural changes, localization of phlorotannin-containing physodes, accumulation of UV-absorbing phlorotannins, and physiological responses of zoospores were measured after exposure treatments as well as after 2-6 d recovery in dim white light (8 mumol photon m(-2) s(-1)). Physodes increased in size under PAB treatment. Extrusion of phlorotannins into the medium and accumulation of physodes was induced not only under UVR treatment but also under PAR. UV-B radiation caused photodestruction indicated by a loss of pigmentation. Photosynthetic efficiency of spores was photoinhibited after 8 h exposure to 22 and 30 mumol photon m(-2) s(-1) of PAR, while supplement of UVR had a significant additional effect on photoinhibition. A relatively low recovery of photosystem II function was observed after 2 d recovery in spores exposed to 1.7 x 10(4) J m(-2) of UV-B, with a germination rate of only 49% of P treatment after 6 d recovery. The amount of UV-B-induced DNA damage measured as cyclobutane-pyrimidine dimers (CPDs) increased with the biologically effective UV-B dose (BED(DNA)). Significant removal of CPDs indicating repair of DNA damage was observed after 2 d in low white light. The protective function of phlorotannins has restricted efficiency for a single cell. Within a plume of zoospores, however, each cell can buffer each other and protect the lower layer of spores from excessive radiation. Exudation of phlorotannins into the water can also reduce the impact of UV-B radiation on UV-sensitive spores. The results of this study showed that the impact of UVR on reproductive cells can be mitigated by protective and repair mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erl154DOI Listing
February 2007

Exposure to ultraviolet radiation delays photosynthetic recovery in Arctic kelp zoospores.

Photosynth Res 2006 Jun 7;88(3):311-22. Epub 2006 Jun 7.

Biologische Anstalt Helgoland, Alfred Wegener Institute for Polar and Marine Research, Marine Station, Postfach 180, 27483 Helgoland, Germany.

Seasonal reproduction in some Arctic Laminariales coincides with increased UV-B radiation due to stratospheric ozone depletion and relatively high water temperatures during polar spring. To find out the capacity to cope with different spectral irradiance, the kinetics of photosynthetic recovery was investigated in zoospores of four Arctic species of the order Laminariales, the kelps Saccorhiza dermatodea, Alaria esculenta, Laminaria digitata, and Laminaria saccharina. The physiology of light harvesting, changes in photosynthetic efficiency and kinetics of photosynthetic recovery were measured by in vivo fluorescence changes of Photosystem II (PSII). Saturation irradiance of freshly released spores showed minimal I ( k ) values (photon fluence rate where initial slope intersects horizontal asymptote of the curve) values ranging from 13 to 18 micromol photons m(-2) s(-1) among species collected at different depths, confirming that spores are low-light adapted. Exposure to different radiation spectra consisting of photosynthetically active radiation (PAR; 400-700 nm), PAR+UV-A radiation (UV-A; 320-400 nm), and PAR+ UV-A+UV-B radiation (UV-B; 280-320 nm) showed that the cumulative effects of increasing PAR fluence and the additional effect of UV-A and UV-B radiations on photoinhibition of photosynthesis are species specific. After long exposures, Laminaria saccharina was more sensitive to the different light treatments than the other three species investigated. Kinetics of recovery in zoospores showed a fast phase in S. dermatodea, which indicates a reduction of the photoprotective process while a slow phase in L. saccharina indicates recovery from severe photodamage. This first attempt to study photoinhibition and kinetics of recovery in zoospores showed that zoospores are the stage in the life history of seaweeds most susceptible to light stress and that ultraviolet radiation (UVR) effectively delays photosynthetic recovery. The viability of spores is important on the recruitment of the gametophytic and sporophytic life stages. The impact of UVR on the zoospores is related to the vertical depth distribution of the large sporophytes in the field.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-006-9055-yDOI Listing
June 2006

Thallus morphology and optical characteristics affect growth and DNA damage by UV radiation in juvenile Arctic Laminaria sporophytes.

Planta 2006 Feb 22;223(3):407-17. Epub 2005 Oct 22.

Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, 27498 Helgoland, Germany.

Growth of young sporophytes of the brown algae Laminaria digitata, L. saccharina and L. solidungula from Spitsbergen were measured in the laboratory after being exposed for 21 days to either photosynthetically active radiation (PAR = P) or to full light spectrum (PAR + UV-A + UV-B = PAB) using of cutoff glass filters. The plants were grown at 8+/-2 degrees C and 16 h light : 8 h dark cycles with 6 h additional ultraviolet radiation (UVR) exposure in the middle of the light period. Growth was measured every 10 min using growth chambers with online video measuring technique. Tissue morphology and absorption spectra were measured in untreated young sporophytes while chlorophyll (Chl) a content and DNA damage were measured in treated thalli at the end of the experiment. In all species, growth rates were significantly higher in sporophytes exposed to P alone compared to sporophytes exposed to PAB. Tissue DNA damage is dependent on thallus thickness and absorption spectra characteristics of pigments and UV-absorbing compounds. In sporophytes exposed to UVR, energy demands for repair of DNA damage and synthesis of UV-absorbing compounds for protection effectively diverts photosynthate at the expense of growth. Photosynthetic pigment was not significantly different between treatments suggesting a capacity for acclimation to moderate UVR fluence. The general growth pattern in sporophytes exposed to P alone showed an increasing growth rate from the onset of light (0500-0900 hours) to a peak at the middle of the light phase (0900-1500 hours), a decline towards the end of the light phase (1500-2100 hours) and a minimum "low" growth in the dark (2100-0500 hours) relative to growth during the entire light phase. Under PAB, different growth patterns were observed such as growth compensation at night in L. digitata, delayed growth recovery in L. saccharina and minimal but continuous growth in L. solidungula. Growth as an integrative parameter of all physiological processes showed that the effect of UVR is correlated to the depth distribution of these species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-005-0092-0DOI Listing
February 2006

Ultraviolet radiation affects emission of ozone-depleting substances by marine macroalgae: results from a laboratory incubation study.

Environ Sci Technol 2004 Dec;38(24):6605-9

The Swedish Institute for Climate Science and Policy Research, Department of Thematic Studies, Linköpings Universitet, 601 74 Norrköping, Sweden.

The depletion of stratospheric ozone due to the effects of ozone-depleting substances, such as volatile organohalogens, emitted into the atmosphere from industrial and natural sources has increased the amount of ultraviolet radiation reaching the earth's surface. Especially in the subpolar and polar regions, where stratospheric ozone destruction is the highest, individual organisms and whole ecosystems can be affected. In a laboratory study, several species of marine macroalgae occurring in the polar and northern temperate regions were exposed to elevated levels of ultraviolet radiation. Most of the macroalgae released significantly more chloroform, bromoform, dibromomethane, and methyl iodide-all volatile organohalogens. Calculating on the basis of the release of total chlorine, bromine, and iodine revealed that, except for two macroalgae emitting chlorine and one alga emitting iodine, exposure to ultraviolet radiation caused macroalgae to emit significantly more total chlorine, bromine, and iodine. Increasing levels of ultraviolet radiation due to possible further destruction of the stratospheric ozone layer as a result of ongoing global atmospheric warming may thus increase the future importance of marine macroalgae as a source for the global occurrence of reactive halogen-containing compounds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/es049527sDOI Listing
December 2004

A monochromatic action spectrum for the photoinduction of the UV-absorbing mycosporine-like amino acid shinorine in the red alga Chondrus crispus.

Photochem Photobiol 2004 Jun;79(6):515-9

Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.

To determine the action spectrum for photoinduction of the ultraviolet (UV)-absorbing mycosporine-like amino acid shinorine, specimens of the marine red alga Chondrus crispus were irradiated with monochromatic light of various wavelengths using the Okazaki large spectrograph at the National Institute for Basic Biology, Okazaki, Japan. Fluence response curves were determined for the wavelengths between 280 and 750 nm, by irradiating the algae with monochromatic light for 10 h, followed by 4 h of 25 micromol m(-2) s(-1) photosynthetically active radiation and 10 h darkness. Samples were taken after the second exposure interval. A linear correlation between fluence rate and accumulated shinorine concentration was detected for wavelengths between 350 and 490 nm in the fluence rate range of 20-30 micromol m(-2) s(-1), whereas there was no induction above 490 nm. Below 350 nm a decline in shinorine concentration could be observed at fluence rates above 30 micromol m(-2) s(-1), probably due to an inhibition of photosynthetic activity and a subsequent impairment of shinorine biosynthesis. The constructed action spectrum indicated that the photoreceptors mediating shinorine photoinduction might be an unidentified UV-A-type photoreceptor with absorption peaks at 320, 340 and 400 nm.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1562/2003-12-14-ra.1DOI Listing
June 2004

Solar ultraviolet radiation affects the activity of ribulose-1,5-bisphosphate carboxylase-oxygenase and the composition of photosynthetic and xanthophyll cycle pigments in the intertidal green alga Ulva lactuca L.

Planta 2002 Jul 17;215(3):502-9. Epub 2002 Apr 17.

University of Groningen, Department of Marine Biology, Biological Centre, Kerklaan 30, 9750 AA Haren (Gn), The Netherlands.

The effect of solar UV radiation on the physiology of the intertidal green macroalga Ulva lactuca L. was investigated. A natural Ulva community at the shore of Helgoland was covered with screening foils, excluding UV-B or UV-B + UV-A from the solar spectrum. In the sampled material, changes in the activity and concentration of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco), and the concentration of photosynthetic and xanthophyll cycle pigments were determined. Exclusion of UV radiation from the natural solar spectrum resulted in an elevated overall activity of Rubisco, related to an increase in its cellular concentration. Among the photosynthetic pigments, lutein concentration was substantially elevated under UV exclusion. In addition, marked UV effects on the xanthophyll cycle were found: exclusion of solar UV radiation (and particularly UV-B) resulted in an increased ratio of zeaxanthin concentration to the total xanthophyll content, indicating adverse effects of UV-B on the efficiency of photoprotection under high irradiances of photosynthetically active radiation. The results confirm a marked impact of present UV-B levels on macroalgal physiology under field conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-002-0774-9DOI Listing
July 2002

Two forms of phycobilisomes in the Antarctic red macroalga Palmaria decipiens (Palmariales, Florideophyceae).

Physiol Plant 2001 Aug;112(4):572-581

Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany; Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, P.O. Box 33 04 40, D-28334 Bremen, Germany; Present address: Department of Plant Biology, Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark.

The phycobilisomes (PBS), the light-harvesting antennae, from the endemic Antarctic red macroalga Palmaria decipiens were isolated on discontinuous sucrose gradients in two discrete bands and not in one as expected. To exclude methodical faults, we also isolated PBS from the temperate Palmaria palmata and the unicellular red algae Porphyridium cruentum and Rhodella violacea. In P. palmata the PBS were separated in two discrete bands, whereas the PBS from Porphyridium and Rhodella were found in one band. The double-banded PBS (PBSup and PBSlow) from P. decipiens were further characterized by absorption and fluorescence spectroscopy, native and SDS-PAGE as well as by negative staining. The phycobiliproteins RIII-phycoerythrin, RI-phycocyanin and allophycocyanin were identified and 3 gamma-subunits were described. The PBSup and PBSlow showed no significant differences in their absorption spectra and phycobiliprotein ratios although the negative stained PBSlow were smaller. Differences were found in their low molecular mass subunit complexes, which are assumed to be r-phycoerythrin. The polypeptide pattern of the PBSup and PBSlow showed no differences in the molecular masses of their subunits and linker polypeptides, but in their percentage distribution. The results suggest that the PBSlow is a closer packed and PBSup a little more loosely aggregated hemiellipsiodal PBS form. We discuss the ecophysiological function of two PBS forms in P. decipiens and suggest advantages in the rapid acclimation to changes in environmental light conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1034/j.1399-3054.2001.1120416.xDOI Listing
August 2001