Publications by authors named "Christian Thuillez"

108 Publications

Transient heart rate reduction improves acute decompensated heart failure-induced left ventricular and coronary dysfunction.

ESC Heart Fail 2021 Apr 20;8(2):1085-1095. Epub 2021 Jan 20.

Normandie Université, UNIROUEN, Inserm U1096 Endothelium, Valvulopathy and Heart Failure, Rouen, 76183, France.

Aims: Acute decompensated heart failure (ADHF), a live-threatening complication of heart failure (HF), associates a further decrease of the already by HF-impaired cardiac function with an increase in heart rate. We evaluated, using a new model of ADHF, whether heart rate reduction (HRR) opposes the acute decompensation-related aggravation of cardiovascular dysfunction.

Methods And Results: Cardiac output (echocardiography), cardiac tissue perfusion (magnetic resonance imaging), pulmonary wet weight, and in vitro coronary artery relaxation (Mulvany) were assessed 1 and 14 days after acute decompensation induced by salt-loading (1.8 g/kg, PO) in rats with well-established HF due to coronary ligation. HRR was induced by administration of the I current inhibitor S38844, 12 mg/kg PO twice daily for 2.5 days initiated 12 h or 6 days after salt-loading (early or delayed treatment, respectively). After 24 h, salt-loading resulted in acute decompensation, characterized by a reduction in cardiac output (HF: 130 ± 5 mL/min, ADHF: 105 ±  8 mL/min; P < 0.01), associated with a decreased myocardial perfusion (HF: 6.41 ± 0.53 mL/min/g, ADHF: 4.20 ± 0.11 mL/min/g; P < 0.01), a slight increase in pulmonary weight (HF: 1.68 ± 0.09 g, ADHF: 1.81 ± 0.15 g), and impaired coronary relaxation (HF: 55 ± 1% of pre-contraction at acetylcholine 4.5 10  M, ADHF: 27 ± 7 %; P < 0.01). Fourteen days after salt-loading, cardiac output only partially recovered (117 ± 5 mL/min; P < 0.05), while myocardial tissue perfusion (4.51 ± 0.44 mL/min; P < 0.01) and coronary relaxation (28 ± 4%; P < 0.01) remained impaired, but pulmonary weight further increased (2.06 ± 0.15 g, P < 0.05). Compared with untreated ADHF, HRR induced by S38844 improved cardiac output (125 ± 1 mL/min; P < 0.05), myocardial tissue perfusion (6.46 ± 0.42 mL/min/g; P < 0.01), and coronary relaxation (79 ± 2%; P < 0.01) as soon as 12 h after S38844 administration. These effects persisted beyond S38844 administration, illustrated by the improvements in cardiac output (130 ± 6 mL/min; P < 0.05), myocardial tissue perfusion (6.38 ± 0.48 mL/min/g; P < 0.01), and coronary relaxation (71 ± 4%; P < 0.01) at Day 14. S38844 did not modify pulmonary weight at Day 1 (1.78 ± 0.04 g) but tended to decrease pulmonary weight at Day 14 (1.80 ± 0.18 g). While delayed HRR induced by S38844 never improved cardiac function, early HRR rendered less prone to a second acute decompensation.

Conclusions: In a model mimicking human ADHF, early, but not delayed, transient HRR induced by the I current inhibitor S38844 opposes acute decompensation by preventing the decompensated-related aggravation of cardiovascular dysfunction as well as the development of pulmonary congestion, and these protective effects persist beyond the transient treatment. Whether early transient HRR induced by I current inhibitors or other bradycardic agents, i.e. beta-blockers, exerts beneficial effects in human ADHF warrants further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ehf2.13094DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8006644PMC
April 2021

Physiological role of endothelin-1 in flow-mediated vasodilatation in humans and impact of cardiovascular risk factors.

J Hypertens 2017 06;35(6):1204-1212

aDepartment of Pharmacology, Rouen University HospitalbInstitut National de la Santé et de la Recherche Médicale (INSERM) U1096cInstitute for Research and Innovation in Biomedicine, Normandy University, University of RouendCentre d'Investigation Clinique (CIC)-INSERM 1404, Rouen University HospitaleEquipe d'Accueil (EA) 4651, Rouen, France.

Objectives: The current study addressed the hypothesis that the local decrease in endothelin-1 (ET-1) bioavailability during sustained flow increases contributes to endothelium-dependent, flow-mediated dilatation (FMD) of conduit arteries and is altered in presence of cardiovascular risk factors.

Methods And Results: In nine young healthy individuals, the decrease in local ET-1 plasma levels and radial artery FMD in response to hand skin heating (from 34 to 44 °C) was not affected by endothelin type A (ETA) receptor blockade, achieved using the brachial infusion of BQ-123 (100 nmol/min per l of forearm), as compared with physiological saline (0.9% NaCl) infusion. In contrast, endothelin type B (ETB) receptor blockade with BQ-788 (10 nmol/min per l) suppressed the decrease in plasma ET-1 during heating and reduced FMD, without altering nitric oxide release. The coinfusion of BQ-123 did not affect the inhibitory effect of ETB receptor blockade on the decrease in ET-1 plasma levels during heating but prevented the reduction in FMD. Basal radial artery parameters, systemic hemodynamics, and endothelium-independent dilatation to glyceryl trinitrate were not modified by ETA and/or ETB blockade. In a general population of 40 participants without treatment or major cardiovascular diseases, including the nine healthy individuals, the reduction in endothelin-1 level during heating was correlated with FMD (r = -0.55, P < 0.001) and decreased with increased age (r = 0.49, P = 0.001), mean arterial blood pressure (r = 0.48, P = 0.002), and total cholesterol level (r = 0.37, P = 0.024).

Conclusion: The uptake of endothelin-1 by ETB receptors contributes to conduit artery FMD, preventing its vasoconstrictor action mediated by ETA receptors. The alteration of this mechanism by cardiovascular risk factors may contribute to endothelial dysfunction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/HJH.0000000000001307DOI Listing
June 2017

A sensitive LC-MS/MS method for the quantification of regioisomers of epoxyeicosatrienoic and dihydroxyeicosatrienoic acids in human plasma during endothelial stimulation.

Anal Bioanal Chem 2017 Mar 15;409(7):1845-1855. Epub 2016 Dec 15.

Department of Pharmacology, Rouen University Hospital, 1 rue de Germont, 76031, Rouen, France.

Epoxyeicosatrienoic acids (EETs) are vasodilating lipid mediators metabolized into dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase. We aimed to develop a LC-MS/MS method to quantify EETs and DHETs in human plasma and monitored their levels during vascular endothelial stimulation. Plasma samples, collected from 14 healthy and five hypertensive subjects at baseline and during radial artery endothelium-dependent flow-mediated dilatation, were spiked with internal standards. Lipids were then extracted by a modified Bligh and Dyer method and saponified to release bound EETs and DHETs. Samples were purified by a second liquid-liquid extraction and analyzed by LC-MS/MS. The assay allowed identification of (±)8(9)-epoxy-5Z,11Z,14Z-eicosatrienoic acid (8,9-EET); (±)11(12)-epoxy-5Z,8Z,14Z-eicosatrienoic acid (11,12-EET); (±)14(15)-epoxy-5Z,8Z,11Z-eicosatrienoic acid (14,15-EET); (±)8,9-dihydroxy-5Z,11Z,14Z-eicosatrienoic acid (8,9-DHET); (±)11,12-dihydroxy-5Z,8Z,14Z-eicosatrienoic acid (11,12-DHET); and (±)14,15-dihydroxy-5Z,8Z,11Z-eicosatrienoic acid (14,15-DHET). (±)5(6)-epoxy-5Z,11Z,14Z-eicosatrienoic acid (5,6-EET) was virtually undetectable due to its chemical instability. The limits of quantification were 0.25 ng/mL for DHETs and 0.5 ng/mL for EETs. Intra- and inter-assay variations ranged from 1.6 to 13.2%. Heating induced a similar increase in 8,9-EET, 11,12-EET, and 14,15-EET levels and in corresponding DHET levels in healthy but not in hypertensive subjects. We validated a sensitive LC-MS/MS method for measuring simultaneously plasma EET and DHET regioisomers in human plasma and showed its interest for assessing endothelial function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-016-0129-1DOI Listing
March 2017

Haemoglobin J-Baltimore can be detected by HbA1c electropherogram but with underestimated HbA1c value.

Biochem Med (Zagreb) 2016 ;26(2):240-2

Department of Medical Biochemistry, Rouen University Hospital, Rouen, France; Department of Pharmacology, Rouen University Hospital, Rouen, France.

Glycated haemoglobin (HbA(1c)) is considered the gold standard for assessing diabetes compensation and treatment. In addition, fortuitous detection of haemoglobin variants during HbA1c measurement is not rare. Recently, two publications reported different conclusions on accuracy of HbA(1c) value using capillary electrophoresis method in presence of haemoglobin J-Baltimore (HbJ).
Here we describe the fortuitous detection of unknown HbJ using capillary electrophoresis for measurement of HbA(1c). A patient followed for gestational diabetes in our laboratory presented unknown haemoglobin on Capillarys 2 Flex Piercing analyser which was identified as HbJ. HbJ is not associated with haematological abnormalities. High Performance Liquid Chromatography methods are known to possibly underestimate HbA(1c) value in the presence of this variant. This variant and its glycated form are clearly distinguished on electropherogram but HbJ was responsible for underestimating the true area of HbA(1c).
 Capillary electrophoresis is a good method for detecting HbJ but does not seem suitable for evaluation of HbA(1C) value in patients in presence of HbJ variant.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.11613/BM.2016.026DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910267PMC
August 2016

Chronically Hypocalcemic Patient with Hypercalcemia.

Clin Chem 2016 05;62(5):783-4

Department of Medical Biochemistry, and Department of Pharmacology, Rouen University Hospital, Rouen, France.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1373/clinchem.2015.247023DOI Listing
May 2016

Selective Stimulation of Cardiac Lymphangiogenesis Reduces Myocardial Edema and Fibrosis Leading to Improved Cardiac Function Following Myocardial Infarction.

Circulation 2016 Apr 1;133(15):1484-97; discussion 1497. Epub 2016 Mar 1.

From Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (O.H., C.P., M.H., L.N., J.-P.H., A.D., I.B., S.B., C.T., V.R., P.M., E.B.); Normandy University & University of Rouen, Institute for Research and Innovation in Biomedicine, France (O.H., C.P., M.H., L.G., L.N., J.-P.H., A.D., I.B., S.B., D.S., C.T., V.R., P.M., E.B.); PRIMACEN, Cell Imaging Platform of Normandy, Inserm, Mont-Saint-Aignan, France (L.G., D.S.); PICTUR, In Vivo Imaging Platform, University of Rouen, Institute for Research and Innovation in Biomedicine, France (L.N., C.T., P.M.); Reims Institute of Molecular Chemistry, UMR 7312 CNRS-URCA, University of Reims Champagne Ardenne, France (F.E.-L,); and Rouen University Hospital, Department of Pharmacology, France (C.T.).

Background: The lymphatic system regulates interstitial tissue fluid balance, and lymphatic malfunction causes edema. The heart has an extensive lymphatic network displaying a dynamic range of lymph flow in physiology. Myocardial edema occurs in many cardiovascular diseases, eg, myocardial infarction (MI) and chronic heart failure, suggesting that cardiac lymphatic transport may be insufficient in pathology. Here, we investigate in rats the impact of MI and subsequent chronic heart failure on the cardiac lymphatic network. Further, we evaluate for the first time the functional effects of selective therapeutic stimulation of cardiac lymphangiogenesis post-MI.

Methods And Results: We investigated cardiac lymphatic structure and function in rats with MI induced by either temporary occlusion (n=160) or permanent ligation (n=100) of the left coronary artery. Although MI induced robust, intramyocardial capillary lymphangiogenesis, adverse remodeling of epicardial precollector and collector lymphatics occurred, leading to reduced cardiac lymphatic transport capacity. Consequently, myocardial edema persisted for several months post-MI, extending from the infarct to noninfarcted myocardium. Intramyocardial-targeted delivery of the vascular endothelial growth factor receptor 3-selective designer protein VEGF-CC152S, using albumin-alginate microparticles, accelerated cardiac lymphangiogenesis in a dose-dependent manner and limited precollector remodeling post-MI. As a result, myocardial fluid balance was improved, and cardiac inflammation, fibrosis, and dysfunction were attenuated.

Conclusions: We show that, despite the endogenous cardiac lymphangiogenic response post-MI, the remodeling and dysfunction of collecting ducts contribute to the development of chronic myocardial edema and inflammation-aggravating cardiac fibrosis and dysfunction. Moreover, our data reveal that therapeutic lymphangiogenesis may be a promising new approach for the treatment of cardiovascular diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.115.020143DOI Listing
April 2016

Vascular Smooth Muscle Mineralocorticoid Receptor Contributes to Coronary and Left Ventricular Dysfunction After Myocardial Infarction.

Hypertension 2016 Apr 22;67(4):717-23. Epub 2016 Feb 22.

From the Institut National de la Santé et de la Recherche Médicale (Inserm) U1096, Rouen, France (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.); Institute for Research and Innovative Biomedicine (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), UFR Médecine-Pharmacie (A.G., N.H., J.F., L.N., J.-P.H., M.B., C.T., V.R., P.M., A.O.-P.), and Plateau d'Imagerie Cardio-Thoracique de l'Université de Rouen (PICTUR) (L.N., C.T., P.M.), Normandy-University, Rouen, France; Inserm U1138, Cordeliers Institute, Paris VI-University, Paris, France (G.G., F.J.); and Cardiology Research, Bayer-Pharmaceuticals, Wuppertal, Germany (P.K.).

Mineralocorticoid receptor (MR) antagonists slow down the progression of heart failure after myocardial infarction (MI), but the cell-specific role of MR in these benefits is unclear. In this study, the role of MR expressed in vascular smooth muscle cells (VSMCs) was investigated. Two months after coronary artery ligation causing MI, mice with VSMC-specific MR deletion (MI-MR(SMKO)) and mice treated with the MR antagonist finerenone (MI-fine) had improved left ventricular compliance and elastance when compared with infarcted control mice (MI-CTL), as well as reduced interstitial fibrosis. Importantly, the coronary reserve assessed by magnetic resonance imaging was preserved (difference in myocardial perfusion before and after induction of vasodilatation, mL mg(-1) min(-1): MI-CTL: 1.1 ± 0.5, nonsignificant; MI-MR(SMKO): 4.6 ± 1.6 [P<0.05]; MI-fine: 3.6 ± 0.7 [P<0.01]). The endothelial function, tested on isolated septal coronary arteries by analyzing the acetylcholine-induced nitric oxide-dependent relaxation, was also improved by MR deletion in VSMCs or by finerenone treatment (relaxation %: MI-CTL: 36 ± 5, MI-MR(SMKO): 54 ± 3, and MI-fine: 76 ± 4; P<0.05). Such impairment of the coronary endothelial function on MI involved an oxidative stress that was reduced when MR was deleted in VSMCs or by finerenone treatment. Moreover, short-term incubation of coronary arteries isolated from noninfarcted animals with low-dose angiotensin-II (10(-9) mol/L) induced oxidative stress and impaired acetylcholine-induced relaxation in CTL but neither in MR(SMKO) nor in mice pretreated with finerenone. In conclusion, deletion of MR in VSMCs improved left ventricular dysfunction after MI, likely through maintenance of the coronary reserve and improvement of coronary endothelial function. MR blockage by finerenone had similar effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06709DOI Listing
April 2016

Impact of CYP2C19 genetic polymorphisms on voriconazole dosing and exposure in adult patients with invasive fungal infections.

Int J Antimicrob Agents 2016 Feb 21;47(2):124-31. Epub 2015 Dec 21.

Department of Pharmacology and Toxicology, University Hospital, Rouen, France; INSERM U1096, University of Rouen, School of Medicine, Rouen, France.

Voriconazole (VCZ) use is limited by its narrow therapeutic range and significant interpatient variability in exposure. This study aimed to assess (i) the impact of CYP2C19 genotype on VCZ exposure and (ii) the doses required to achieve the therapeutic range in adult patients with invasive fungal infections (IFIs). Therapeutic drug monitoring (TDM) of VCZ, based on trough concentration measurement, and CYP2C19 genotyping were used to guide VCZ dosing in Caucasian patients with IFIs. The two common polymorphisms in Caucasians (CYP2C19*2 and *17), associated with decreased or increased CYP2C19 activity, respectively, were correlated with the daily VCZ dose, pharmacokinetic parameters and concentration-to-dose ratio. In total, 111 trough concentration measurements from 35 genotyped patients were analysed using linear mixed-effect models. The mean VCZ doses required to achieve target concentrations were significantly higher in CYP2C19*17 carriers compared with CYP2C19*1/*1 individuals (P<0.001): 2.57±0.25mg/kg twice daily in CYP2C19*1/*1 patients versus 3.94±0.39mg/kg and 6.75±0.54mg/kg in *1/*17 and *17/*17 patients, respectively. In addition, exposure to VCZ correlated with the CYP2C19*17 variant. Indices of exposure for CYP2C19*2 carriers were in line with the functional effect of this polymorphism compared with CYP2C19*1/*1 individuals, however comparisons of doses required to achieve target concentrations were not statistically different. The CYP2C19*17 allele predicted both VCZ exposure and dose required to achieve effective and non-toxic concentrations. CYP2C19 genotyping appears useful to guide VCZ initial dosing when coupled with TDM and to explain subtherapeutic concentrations frequently observed in clinical practice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijantimicag.2015.12.003DOI Listing
February 2016

Selective Heart Rate Reduction Improves Metabolic Syndrome-related Left Ventricular Diastolic Dysfunction.

J Cardiovasc Pharmacol 2015 Oct;66(4):399-408

*Institut National de la Santé et de la Recherche Médicale U1096, Rouen, France; †Institute for Research and Innovation in Biomedicine, Rouen, France; ‡UFR de Médecine et Pharmacie, Rouen University, Rouen, France; §Plateau d'Imagerie CardioThoracique de l'Universite de Rouen, Rouen, France; ¶Equipe d'Acceuil 4651, Aliment Bioprocedes Toxicologie Environnement, Rouen, France; ‖Bruker Biospin MRI GMBH, Ettlingen, Germany; and **Servier, Suresnes, France.

Background: Enhanced heart rate observed in metabolic syndrome (MS) contributes to the deterioration of left ventricular (LV) function via impaired LV filling and relaxation, increased myocardial O2 consumption, and reduced coronary perfusion. However, whether heart rate reduction (HRR) opposes LV dysfunction observed in MS is unknown.

Methods: We assessed in Zucker fa/fa rats, a rat model of MS, the cardiovascular effects of HRR induced by the If current inhibitor S38844 (3 mg · kg(-1) · d(-1)).

Results: Delayed short-term (4 days) and long-term (90 days) HRR induced by S38844 reduced LV end-diastolic pressure and LV end-diastolic pressure-volume relation, increased myocardial tissue perfusion, decreased myocardial oxidized glutathione levels, and preserved cardiac output, without modifying LV end-systolic pressure and LV end-systolic pressure-volume relation, although only long-term S38844 opposed LV collagen accumulation. Long-term S38844 improved flow-induced endothelium-dependent dilatation of mesenteric arteries, while metabolic parameters, such as plasma glucose levels, and Hb1c, were never modified.

Conclusions: In rats with MS, HRR induced by the If inhibitor S38844 improved LV diastolic function and endothelium-dependent vascular dilatation, independent from modifications in metabolic status. Moreover, this improvement in cardiac function involves not only immediate effects such as improved myocardial perfusion and reduced oxidative stress but also long-term effects such as modifications in the myocardial structure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/FJC.0000000000000294DOI Listing
October 2015

Infliximab improves endothelial dysfunction in a mouse model of antiphospholipid syndrome: Role of reduced oxidative stress.

Vascul Pharmacol 2015 Aug 11;71:93-101. Epub 2015 Apr 11.

Rouen University Hospital, Department of Internal Medicine, Rouen France; University of Rouen, Institute for Research and Innovation in Biomedicine, Rouen, France.

Antiphospholipid syndrome (APS), induces endothelial dysfunction, oxidative stress and systemic inflammation that may be mediated by TNFα. Thus, we investigated the possible protective effect of the anti-TNFα antibody infliximab (5μg/g) on endothelial function in a mouse APS model (induced by injection of purified human anti-β2GP1-IgG). Seven days after anti-β2GPI-IgG injection, we observed an increase in plasma sVCAM-1 and sE-selectin levels and in aortic mRNA expression of VCAM-1 and E-selectin. This was associated with a decreased endothelium-dependent relaxation of isolated mesenteric arteries to acetylcholine, together with decreased mesenteric eNOS mRNA expression and increased eNOS uncoupling, accompanied by increased iNOS and gp91phox mRNA and increased left ventricular GSH/GSSH ratio. Infliximab significantly improved the NO-mediated relaxing responses to acetylcholine, and induced a decrease in iNOS and gp91phox mRNA expression. The õpro-adhesive and pro-coagulant phenotypes induced by the anti-β2GP1-IgG were also reversed. This study provides the first evidence that TNFα antagonism improves endothelial dysfunction in APS and suggests that endothelial dysfunction is mediated by TNFα and oxidative stress. Therefore, infliximab may be of special relevance in clinical practice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vph.2015.03.014DOI Listing
August 2015

Role of M2-like macrophage recruitment during angiogenic growth factor therapy.

Angiogenesis 2015 Apr 24;18(2):191-200. Epub 2014 Dec 24.

UFR Médecine-Pharmacie, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096, 22 Boulevard Gambetta, 76183, Rouen Cedex, France.

Therapeutic angiogenesis has yet to fulfill its promise for the clinical treatment of ischemic diseases. Given the impact of macrophages during pathophysiological angiogenesis, we asked whether macrophages may similarly modulate vascular responses to targeted angiogenic therapies. Mouse matrigel plug assay and rat myocardial infarction (MI) model were used to assess angiogenic therapy with either VEGF-A or FGF-2 with HGF (F+H) delivered locally via albumin-alginate microcapsules. The infiltration of classical M1-type and alternative M2-like macrophages was assessed. Clodronate was used to prevent macrophage recruitment, and the VEGFR2 blocking antibody, DC101, to prevent VEGF-A signaling. At 3 weeks after matrigel implantation, the combination therapy (F+H) led to increased total, and specifically M2-like, macrophage infiltration versus control and VEGF-A plugs, correlating with the angiogenic response. In contrast, VEGF-A preferential recruited M1-type macrophages. In agreement with a direct role of M2-like macrophages in F+H-induced vessel growth, clodronate radically decreased angiogenesis. Further, DC101 reduced F+H-induced angiogenesis, without altering macrophage infiltration, revealing macrophage-derived VEGF-A as a crucial determinant of tissue responsiveness. Similarly, increased cardiac M2-like macrophage infiltration was found following F+H therapy post-MI, with strong correlation between macrophage levels and angiogenic and arteriogenic responses. In conclusion, M2-like macrophages play a decisive role, linked to VEGF-A production, in regulation of tissue responsiveness to angiogenic therapies including the combination of F+H. Our data suggest that future attempts at therapeutic revascularization in ischemic patients might benefit from coupling targeted growth factor delivery with either direct or indirect approaches to recruit pro-angiogenic macrophages in order to maximize therapeutic angiogenic/arteriogenic responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10456-014-9456-zDOI Listing
April 2015

Role of Toll-like receptors 2 and 4 in mediating endothelial dysfunction and arterial remodeling in primary arterial antiphospholipid syndrome.

Arthritis Rheumatol 2014 Nov;66(11):3210-20

Rouen University Hospital, INSERM U1096, University of Rouen, and Centre d'Investigation Clinique, INSERM 1404, Rouen, France.

Objective: To assess the role of Toll-like receptors (TLRs) in antiphospholipid antibody (aPL)-mediated vascular abnormalities in patients with primary arterial antiphospholipid syndrome (APS).

Methods: Forty-eight subjects participated in the study. Arterial function and structure and TLR pathway activation were determined in patients with primary arterial APS and matched controls. The pathogenic effects of aPL isolated from patients were assessed in wild-type (WT) and TLR-knockout mice.

Results: APS patients had endothelial dysfunction, arterial stiffening, and hypertrophy, as evidenced by decreased brachial artery endothelium-dependent flow-mediated dilation (FMD) and increased aortic pulse wave velocity and carotid intima-media thickness (IMT), as compared with controls. Plasma samples from APS patients revealed decreased nitric oxide (NO) availability and a pro-oxidative, proinflammatory, and prothrombotic state illustrated by a decrease in nitrite and an increase in lipid peroxidation, tumor necrosis factor α levels, and tissue factor (TF) levels. Furthermore, TLR pathway activation was found in APS patients with increased TLR-2 and TLR-4 messenger RNA expression and increased protein levels of the activated TLR transduction protein interleukin-1 receptor-associated kinase 1 in peripheral blood mononuclear cells. Moreover, agonist-stimulated cell-surface expression of TLR-2 and TLR-4 in circulating monocytes was higher in APS patients than in controls. These changes were positively associated with IMT and negatively associated with FMD. Finally, aPL injection decreased mesenteric endothelium-dependent relaxation and increased TF expression in WT mice but not in TLR-2- or TLR-4-knockout mice.

Conclusion: This translational study supports the notion that TLR-2 and TLR-4 play a role in mediating vascular abnormalities in patients with primary arterial APS. TLRs thus constitute a promising pharmacologic target for preventing cardiovascular complications in APS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.38785DOI Listing
November 2014

Polycystin deficiency induces dopamine-reversible alterations in flow-mediated dilatation and vascular nitric oxide release in humans.

Kidney Int 2015 Feb 16;87(2):465-72. Epub 2014 Jul 16.

1] Department of Pharmacology, Rouen University Hospital, Rouen, France [2] Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France [3] Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France [4] Centre d'Investigation Clinique (CIC)-INSERM 1404, Rouen University Hospital, Rouen, France.

Autosomal dominant polycystic kidney disease (ADPKD) is a renal hereditary disorder associated with increased cardiovascular mortality, due to mutations in polycystin-1 and polycystin-2 genes. Endothelial polycystin-deficient cells have an altered mechanosensitivity to fluid shear stress and subsequent deficit in calcium-induced nitric oxide release, prevented by dopamine receptor stimulation. However, the impact of polycystin deficiency on endothelial function in ADPKD patients is still largely unknown. Here we assessed endothelium-dependent flow-mediated dilatation in 21 normotensive ADPKD patients and 21 healthy control subjects, during sustained (hand skin heating) and transient (postischemic hyperemia) flow stimulation. Flow-mediated dilatation was less marked in ADPKD patients than in controls during heating, but it was similar during postischemic hyperemia. There was no difference in endothelium-independent dilatation in response to glyceryl trinitrate. Local plasma nitrite, an indicator of nitric oxide availability, increased during heating in controls but not in patients. Brachial infusion of dopamine in a subset of ADPKD patients stimulated plasma nitrite increase during heating and improved flow-mediated dilatation. Thus, ADPKD patients display a loss of nitric oxide release and an associated reduction in endothelium-dependent dilatation of conduit arteries during sustained blood flow increase. The correction of these anomalies by dopamine suggests future therapeutic strategies that could reduce the occurrence of cardiovascular events in ADPKD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ki.2014.241DOI Listing
February 2015

Enhanced angiogenesis and increased cardiac perfusion after myocardial infarction in protein tyrosine phosphatase 1B-deficient mice.

FASEB J 2014 Aug 23;28(8):3351-61. Epub 2014 Apr 23.

Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; Institute of Research and Innovations in Biomedicine (IRIB), University of Rouen, Rouen, France; and

The protein tyrosine phosphatase 1B (PTP1B) modulates tyrosine kinase receptors, among which is the vascular endothelial growth factor receptor type 2 (VEGFR2), a key component of angiogenesis. Because PTP1B deficiency in mice improves left ventricular (LV) function 2 mo after myocardial infarction (MI), we hypothesized that enhanced angiogenesis early after MI via activated VEGFR2 contributes to this improvement. At 3 d after MI, capillary density was increased at the infarct border of PTP1B(-/-) mice [+7±2% vs. wild-type (WT), P = 0.05]. This was associated with increased extracellular signal-regulated kinase 2 phosphorylation and VEGFR2 activation (i.e., phosphorylated-Src/Src/VEGFR2 and dissociation of endothelial VEGFR2/VE-cadherin), together with higher infiltration of proangiogenic M2 macrophages within unchanged overall infiltration. In vitro, we showed that PTP1B inhibition or silencing using RNA interference increased VEGF-induced migration and proliferation of mouse heart microvascular endothelial cells as well as fibroblast growth factor (FGF)-induced proliferation of rat aortic smooth muscle cells. At 8 d after MI in PTP1B(-/-) mice, increased LV capillary density (+21±3% vs. WT; P<0.05) and an increased number of small diameter arteries (15-50 μm) were likely to participate in increased LV perfusion assessed by magnetic resonance imaging and improved LV compliance, indicating reduced diastolic dysfunction. In conclusion, PTP1B deficiency reduces MI-induced heart failure promptly after ischemia by enhancing angiogenesis, myocardial perfusion, and diastolic function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.13-245753DOI Listing
August 2014

High-efficiency on-line haemodiafiltration improves conduit artery endothelial function compared with high-flux haemodialysis in end-stage renal disease patients.

Nephrol Dial Transplant 2014 Feb 13;29(2):414-22. Epub 2013 Nov 13.

Department of Pharmacology, Rouen University Hospital, Rouen, France.

Background: Middle molecular weight uraemic toxins are considered to play an important role in vascular dysfunction and cardiovascular outcomes in end-stage renal disease (ESRD) patients. Recent dialysis techniques based on convection, specifically high-efficiency on-line haemodiafiltration (HDF), enhance the removal of middle molecular weight toxins and reduce all-cause mortality in haemodialysis (HD) patients. However, the mechanisms of these improved outcomes remain to be established.

Methods: This prospective study randomly assigned 42 ESRD patients to switch from high-flux HD to high-efficiency on-line HDF (n=22) or to continue HD (n=20). Brachial artery endothelium-dependent flow-mediated dilatation, central pulse pressure, carotid artery intima-media thickness (IMT), internal diastolic diameter and distensibility and circulating markers of uraemia, inflammation and oxidative stress were blindly assessed before and after a 4-month follow-up.

Results: Brachial flow-mediated dilatation and carotid artery distensibility increased significantly in the HDF group compared with HD, while carotid IMT and diameter remained similar. HDF decreased predialysis levels of the uraemic toxins β2-microglobulin, phosphate and blood TNFα mRNA expression. Oxidative stress markers were not different between the HD and HDF groups. Blood mRNA expression of protein kinase C β2, an endothelial NO-synthase (eNOS) inhibitor, decreased significantly with HDF.

Conclusions: High-efficiency on-line HDF prevents the endothelial dysfunction and stiffening of the conduit arteries in ESRD patients compared with high-flux HD. HDF decreases uraemic toxins, vascular inflammation, and is associated with subsequent improvement in eNOS functionality. These results suggest that reduced endothelial dysfunction may be an intermediate mechanism explaining the beneficial outcomes associated with HDF.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ndt/gft448DOI Listing
February 2014

Circulating plasma serine208-phosphorylated troponin T levels are indicator of cardiac dysfunction.

J Cell Mol Med 2013 Oct 2;17(10):1335-44. Epub 2013 Aug 2.

INSERM, U744, Lille, France; Institut Pasteur de Lille, Lille, France; University of Lille 2, IFR141, Lille, France.

Heart failure (HF) following myocardial infarction (MI) is characterized by progressive alterations of left ventricular (LV) structure and function, named LV remodelling. Although several risk factors such as infarct size have been identified, HF remains difficult to predict in clinical practice. Recently, using phosphoproteomic technology, we found that serine(208)-phosphorylated troponin T (P-Ser(208)-TnT) decreases in LV of HF rats. Our aim was to determine the performance of P-Ser(208)-TnT as plasma biomarker of HF compared to conventional cardiac biomarkers such as B-type natriuretic peptide (BNP), cardiac troponin I (cTnI), C-reactive protein (CRP) or tissue inhibitor of metalloproteinase I (TIMP-1) measured by x-MAP technology, as well as its capacity to reflect a pharmacological improvement of HF. We observed a significant increase of BNP, TnT and cTnI levels and a significant decrease of P-Ser(208)-TnT and TIMP-1 in the plasma of 2-month-MI rats compared with control rats with no modulation of CRP level. Circulating levels of P-Ser(208)-TnT were shown to be associated with most of the echocardiographic and haemodynamic parameters of cardiac function. We verified that the decrease of P-Ser(208)-TnT was not because of an excess of phosphatase activity in plasma of HF rats. Two-month-MI rats treated with the heart rate reducing agent ivabradine had improved LV function and increased plasma levels of P-Ser(208)-TnT. Thus, circulating phosphorylated troponin T is a highly sensitive biological indicator of cardiac dysfunction and has the potentiality of a new biomarker of HF post-MI, and of a surrogate marker for the efficacy of a successful treatment of HF.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jcmm.12112DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159027PMC
October 2013

MR relaxometry and perfusion of the myocardium in spontaneously hypertensive rat: correlation with histopathology and effect of anti-hypertensive therapy.

Eur Radiol 2013 Jul 17;23(7):1871-81. Epub 2013 Apr 17.

Inserm U1096, Rouen, France.

Objectives: To investigate myocardial relaxation times and perfusion values in spontaneously hypertensive rats (SHRs) at various stages of the disease, with or without anti-fibrotic therapy, and to correlate magnetic resonance imaging (MRI) findings with histopathological myocardial fibrosis and capillary density.

Methods: Five groups of rats underwent MRI at 4.7 T. They were either untreated or treated with an aldosterone-synthase inhibitor. T1, T2 and T2 relaxation times were determined and myocardial perfusion was quantified from an arterial spin labelling sequence. MR relaxation times and perfusion values were compared with the fibrotic content and capillary density of the myocardium obtained at histology after euthanasia.

Results: T1 values significantly increased during the course of hypertensive disease, and correlated with myocardial fibrosis (R = 0.71, P < 0.001); T2 values also increased but were weakly correlated with myocardial fibrosis (R = 0.27,P = 0.047). Myocardial perfusion and capillary density significantly decreased with hypertensive disease but they did not correlate. Following prolonged treatment, we observed a trend associating T1 decrease and improved perfusion compared with untreated SHRs.

Conclusions: Myocardial T1 and T2 values increase with hypertensive disease, whereas myocardial perfusion decreases. The correlation between T1 values and collagen density suggests that the former could be considered as a non-invasive marker of myocardial fibrosis.

Key Points: • MR is increasingly used to assess alteration in myocardial tissue content. • MR relaxometry and perfusion can be assessed in rats without exogenous contrast agents. • Myocardial T1 and T2 values significantly increase during the course of hypertensive heart disease. • T1 values correlate significantly with myocardial collagen content. • Myocardial perfusion values decrease with hypertensive disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-013-2801-6DOI Listing
July 2013

Omega-3 polyunsaturated fatty acids delay the progression of endotoxic shock-induced myocardial dysfunction.

Inflammation 2013 Aug;36(4):932-40

Institut National de la Santé et de la Recherche Médicale U1096, Rouen, France.

Septic shock has a high mortality rate, partially related to myocardial dysfunction. Polyunsaturated fatty acids (omega-3 PUFAs) possess anti-inflammatory and antioxidant properties, but whether omega-3 PUFAs exert beneficial effects on myocardial function is unknown. We investigated, in a rat model of endotoxic shock, the effects of omega-3 PUFAs pretreatment on cardiac hemodynamics, function, and oxidative stress as well as intestinal barrier. Endotoxic shock was induced by lipopolysaccharide (LPS; 20 mg/kg IP) administered to rats pretreated or not with omega-3 PUFAs (Omegaven®; 0.5 g/kg IP, 90 min before injection of LPS). Two or 5 h after LPS, left ventricular function and arterial pressure were measured, followed by assessment left ventricular total glutathione as well as tumor necrosis factor alpha expression, occuldin expression, and proteasome activities. LPS reduced mean arterial blood pressure to the same extent 2 and 5 h after its administration, but cardiac output was more markedly decreased after 5 h. Omega-3 PUFAs pretreatment did not significantly modify the effect of LPS on mean arterial pressure and total peripheral resistance, but prevented the decrease in cardiac output 2 h after LPS. LPS increased oxidized glutathione after 2 h, and this increase was significantly attenuated by omega-3 PUFAs. Simultaneously, omega-3 PUFAs increased myocardial hemeoxygenase-1 (HO-1) mRNA expression. Finally, omega-3 PUFAs prevented the reduction of intestinal occludin expression. Omega-3 PUFAs pre-treatment improves myocardial dysfunction during endotoxemia and increases myocardial HO-1 expression. Moreover, the preservation of the intestinal occludin induced by omega-3 PUFAs precedes myocardial protection, suggesting the involvement of the intestinal barrier in the myocardial improvement observed with omega-3 PUFAs parenteral supplementation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-013-9622-2DOI Listing
August 2013

Impaired role of epoxyeicosatrienoic acids in the regulation of basal conduit artery diameter during essential hypertension.

Hypertension 2012 Dec 22;60(6):1415-21. Epub 2012 Oct 22.

Departments of Pharmacology, Rouen University Hospital, Rouen, France.

In young healthy subjects, epoxyeicosatrienoic acids synthesized by endothelial cytochrome P450 epoxygenases maintain basal conduit artery diameter during altered NO availability. Whether this compensatory mechanism is effective during essential hypertension is unknown. Radial artery diameter, blood flow, and mean wall shear stress were determined in 14 nontreated essential hypertensive patients and 14 normotensive control subjects during 8 minutes of brachial infusion for inhibitors of cytochrome P450 epoxygenases (fluconazole, 0.4 µmol/min) and NO synthase (N(G)-monomethyl-L-arginine, 8 µmol/min) alone and in combination. In controls, the radial artery diameter was reduced by fluconazole (-0.034 ± 0.012 mm) and N(G)-monomethyl-L-arginine (-0.037 ± 0.010 mm) and to a larger extent by their combination (-0.137 ± 0.011 mm), demonstrating a synergic effect. In contrast, the radial diameter in hypertensive patients was not affected by fluconazole (0.010 ± 0.014 mm) but was reduced by N(G)-monomethyl-L-arginine (-0.091 ± 0.008 mm) to a larger extent than in controls. In parallel, N(G)-monomethyl-L-arginine decreased local plasma nitrite to a lesser extent in hypertensive patients (-14 ± 5 nmol/L) than in controls (-50 ± 10 nmol/L). Moreover, the addition of fluconazole to N(G)-monomethyl-L-arginine did not further decrease radial diameter in patients (-0.086 ± 0.011 mm). Accordingly, fluconazole significantly decreased local epoxyeicosatrienoic acid plasma level in controls (-2.0 ± 0.6 ng/mL) but not in patients (-0.9 ± 0.4 ng/mL). Inhibitors effects on blood flow and endothelium-independent dilatation to sodium nitroprusside were similar between groups. These results show that, in contrast to normotensive subjects, epoxyeicosatrienoic acids did not contribute to the regulation of basal conduit artery diameter and did not compensate for altered NO availability to maintain this diameter in essential hypertensive patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.201087DOI Listing
December 2012

Xanthine oxidase contributes to mitochondrial ROS generation in an experimental model of cocaine-induced diastolic dysfunction.

J Cardiovasc Pharmacol 2012 Dec;60(6):538-43

University of Rouen, INSERM, Rouen, France.

Recent studies have shown that long-term cocaine use induces diastolic impairment and a myocardial oxidative stress. Recently, we have reported that cocaine-induced cardiac dysfunction may be due to a mitochondrial reactive oxygen species (ROS) overproduction, which occurs at the same time as xanthine oxidase (XO) activation. In this work, we hypothesized that XO activation contributes to mitochondrial ROS overproduction, which in turn contributes to diastolic dysfunction. To test this, we used a well-established in vivo model of cocaine-induced diastolic dysfunction. In this experimental model treated with or without allopurinol, an inhibitor of XO, we measured mitochondrial ROS production and function. Mitochondrial alterations were characterized by an increase in oxygen consumption through complexes I and III, a reduction in ATP production, and an increased ROS production specifically in isolated interfibrillar mitochondria. Allopurinol treatment prevented the rise in mitochondrial ROS levels and the decrease in ATP production. In the same way, allopurinol treatment improved ventricular relaxation with a decrease in Tau, an index of left ventricle relaxation and of end-diastolic pressure volume relation. These results confirmed the critical role of XO in the sequence of events leading to cocaine-induced cardiac dysfunction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/FJC.0b013e318271223cDOI Listing
December 2012

Albumin limits mesenteric endothelial dysfunction and inflammatory response in cardiopulmonary bypass.

Artif Organs 2012 Nov 14;36(11):962-71. Epub 2012 Aug 14.

INSERM U, Rouen Biomedical Research Institute, France.

The aim of this study was to investigate the potential anti-inflammatory and endothelial protective properties of albumin during cardiopulmonary bypass (CPB) in an experimental porcine model. Two groups underwent CPB for 90 min (n = 7 in each group), and a baseline (BL) control group did not undergo CPB (n = 7). Priming consisted of a gelatin solution (4% gelofusine, CPBG group) or colloid solution (5% albumin, CPBA group). Mesenteric arterial segments were isolated and exposed in vitro to phenylephrine (with or without nitric oxide synthase inhibition) to assess contractility, and exposed to acetylcholine and sodium nitroprusside to assess relaxation. Plasma tumor necrosis factor (TNF)-α levels, intestinal and pulmonary TNF-α and heme oxygenase (HO)-1 mRNA expression, and organ injury were studied. Upon sacrifice, TNF-α levels were significantly higher in the CPBG group than in the CPBA and BL groups. The contractile response was significantly higher in the CPBG group, whereas the response to acetylcholine was significantly lower in the CPBG group than in the other groups. HO-1 mRNA expression was significantly higher in intestine samples in the CPBA group than in the CPBG and BL groups. HO-1 mRNA expression was significantly higher in lung samples in the CPBA group than in the CPBG group. Leukocyte infiltration was significantly higher in intestine and lung samples in the CPBG group than in the CPBA and BL groups. Albumin priming reduced CPB-induced mesenteric vascular dysfunction and prevented the development of a systemic inflammatory response by modeling HO-1 expression in target organs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1525-1594.2012.01492.xDOI Listing
November 2012

Reduction of heart failure by pharmacological inhibition or gene deletion of protein tyrosine phosphatase 1B.

J Mol Cell Cardiol 2012 Jun 15;52(6):1257-64. Epub 2012 Mar 15.

INSERM U1096, Rouen, France.

Protein tyrosine phosphatase 1B (PTP1B) regulates tyrosine kinase receptor-mediated responses, and especially negatively influences insulin sensitivity, thus PTP1B inhibitors (PTP1Bi) are currently evaluated in the context of diabetes. We recently revealed another important target for PTP1Bi, consisting in endothelial protection. The present study was designed to test whether reduction of PTP1B activity may be beneficial in chronic heart failure (CHF). We evaluated the impact of either a 2 month pharmacological inhibition, or a gene deletion of PTP1B (PTP1B(-/-)) in CHF mice (2 months post-myocardial infarction). PTP1Bi and PTP1B deficiency reduced adverse LV remodeling, and improved LV function, as shown by the increased LV fractional shortening and cardiac output (measured by echocardiography), the increased LV end systolic pressure, and the decreased LV end diastolic pressure, at identical infarct sizes. This was accompanied by reduced cardiac fibrosis, myocyte hypertrophy and cardiac expression of ANP. In vitro vascular studies performed in small mesenteric artery segments showed a restored endothelial function (i.e. improved NO-dependent, flow-mediated dilatation, increased eNOS phosphorylation) after either pharmacological inhibition or gene deletion. PTP1B(-/-) CHF also displayed an improved insulin sensitivity (assessed by euglycemic-hyperinsulinemic clamp studies), when compared to wild-type CHF associated with an increased insulin mediated mesenteric artery dilation. Thus, chronic pharmacological inhibition or gene deletion of PTP1B improves cardiac dysfunction and cardiac remodeling in the absence of changes in infarct size. Thus this enzyme may be a new therapeutic target in CHF. Diabetic patients with cardiac complications may potentially benefit from PTP1B inhibition via two different mechanisms, reduced diabetic complications, and reduced heart failure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2012.03.003DOI Listing
June 2012

Epoxyeicosatrienoic acids contribute with altered nitric oxide and endothelin-1 pathways to conduit artery endothelial dysfunction in essential hypertension.

Circulation 2012 Mar;125(10):1266-75

Department of Pharmacology, Rouen University Hospital, France.

Background: We sought to clarify, using functional and biological approaches, the role of epoxyeicosatrienoic acids, nitric oxide (NO)/reactive oxygen species balance, and endothelin-1 in conduit artery endothelial dysfunction during essential hypertension.

Methods And Results: Radial artery diameter and mean wall shear stress were determined in 28 untreated patients with essential hypertension and 30 normotensive control subjects during endothelium-dependent flow-mediated dilatation induced by hand skin heating. The role of epoxyeicosatrienoic acids and NO was assessed with the brachial infusion of inhibitors of cytochrome P450 epoxygenases (fluconazole) and NO synthase (N(G)-monomethyl-l-arginine [L-NMMA]). Compared with controls, hypertensive patients exhibited a decreased flow-mediated dilatation in response to postischemic hyperemia as well as to heating, as shown by the lesser slope of their diameter-shear stress relationship. In controls, heating-induced flow-mediated dilatation was reduced by fluconazole, L-NMMA, and, to a larger extent, by L-NMMA+fluconazole. In patients, flow-mediated dilatation was not affected by fluconazole and was reduced by L-NMMA and L-NMMA+fluconazole to a lesser extent than in controls. Furthermore, local plasma epoxyeicosatrienoic acids increased during heating in controls (an effect diminished by fluconazole) but not in patients. Plasma nitrite, an indicator of NO availability, increased during heating in controls (an effect abolished by L-NMMA) and, to a lesser extent, in patients, whereas, inversely, reactive oxygen species increased more in patients (an effect diminished by L-NMMA). Plasma endothelin-1 decreased during heating in controls but not in patients.

Conclusions: These results show that an impaired role of epoxyeicosatrienoic acids contributes, together with an alteration in NO/reactive oxygen species balance and endothelin-1 pathway, to conduit artery endothelial dysfunction in essential hypertension.

Clinical Trial Registration: https://www.eudract.ema.europa.eu. Unique identifier: RCB2007-A001-10-53.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.111.070680DOI Listing
March 2012

Progenitor cell mobilizing treatments prevent experimental transplant arteriosclerosis.

J Surg Res 2012 Aug 22;176(2):657-65. Epub 2011 Dec 22.

Inserm U644, Institute for Biomedical Research, Rouen University, Rouen, France.

Objective: Vascular rejection after organ transplantation is characterized by an arterial occlusive lesion, resulting from intimal proliferation occurring in response to arterial wall immune aggression. Our hypothesis is that an early endothelial repair may prevent vascular graft rejection. The aim of the current study was to compare different pharmacologic progenitor cell mobilizing treatments for their protective effects against vascular rejection.

Methods And Results: Aortic transplants were made from balb/c donor to C57Bl/6 recipient mice. Three different mobilizing pharmacologic agents were used: low molecular weight fucoidan (LMWF), simvastatin, and AMD3100. The circulating levels of progenitor cells were found to be increased by all three treatments, as determined by flow cytometry. For each treatment, the design was: treated allografts, nontreated allografts, treated isografts, and nontreated isografts. After 21 d, morphometric and immunohistochemical analyses were performed. We found that the three treatments significantly reduced intimal proliferation, compared with nontreated allografts. This was associated with intimal re-endothelialization of the grafts. Further, in chimeric mice that had previously received GFP-transgenic bone marrow transplantation, GFP-positive cells were found in the vascular allograft intima, indicating that re-endothelialization was, at least partly, due to the recruitment of bone marrow-derived, presumably endothelial progenitor circulating cells.

Conclusions: In this aortic allograft model, three different mobilizing treatments were found to partially prevent vascular transplant rejection. Bone marrow-derived progenitor cells mobilized by the three treatments may play a direct role in the endothelial repair process and in the suppression of intimal proliferation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2011.11.1014DOI Listing
August 2012

Soluble epoxide hydrolase inhibition improves myocardial perfusion and function in experimental heart failure.

J Mol Cell Cardiol 2012 Mar 6;52(3):660-6. Epub 2011 Dec 6.

Institut National de la Sante et de la Recherche Medicale U644, University of Rouen, Rouen, France.

The study addressed the hypothesis that soluble epoxide hydrolase (sEH) inhibition, which increases cardiovascular protective epoxyeicosatrienoic acids (EETs), exerts beneficial effects in an established chronic heart failure (CHF) model. In CHF rats, left ventricular (LV) function, perfusion and remodeling were assessed using MRI and invasive hemodynamics after 42-day (starting 8 days after coronary ligation) and delayed 3-day (starting 47 days after coronary ligation) treatments with the sEH inhibitor AUDA (twice 0.25 mg/day). Delayed 3-day and 42-day AUDA increased plasma EETs demonstrating the effective inhibition of sEH. Delayed 3-day and 42-day AUDA enhanced cardiac output without change in arterial pressure, thus reducing total peripheral resistance. Both treatment periods increased the slope of the LV end-systolic pressure-volume relation, but only 42-day AUDA decreased LV end-diastolic pressure, relaxation constant Tau and the slope of the LV end-diastolic pressure-volume relation, associated with a reduced LV diastolic volume and collagen density. Delayed 3-day and, to a larger extent, 42-day AUDA increased LV perfusion associated with a decreased LV hypoxia-inducible factor-1alpha. Both treatment periods decreased reactive oxygen species level and increased reduced-oxidized glutathione ratio. Finally, MSPPOH, an inhibitor of the EET-synthesizing enzyme cytochrome epoxygenases, abolished the beneficial effects of 3-day AUDA on LV function and perfusion. Augmentation of EET availability by pharmacological inhibition of sEH increases LV diastolic and systolic functions in established CHF. This notably results from short-term processes, i.e. increased LV perfusion, reduced LV oxidative stress and peripheral vasodilatation, but also from long-term effects, i.e. reduced LV remodeling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2011.11.015DOI Listing
March 2012

A kinetic study of SDF-1, VEGF and MCP-1 blood and tissue levels after aortic transplantation in mice.

Acta Histochem 2012 Oct 9;114(6):636-8. Epub 2011 Nov 9.

INSERM U, Institute for Biomedical Research, Rouen University, France.

Vascular rejection is characterized by intimal proliferation and perivascular inflammation. We hypothesize that recipient stem cell therapy could prevent or ameliorate the development of the obliterative lesion. We studied the kinetic expression of three cytokines (SDF-1, MCP-1, VEGF) implicated in mobilization, homing and differentiation of progenitor cells during vascular aggression. An aortic allograft mouse model was used (BALBc donor-C57BL6/j recipient). Ten mice were sacrificed at Day 0, D1, D3, D6, D9, D12, and D20. Cytokine rates were measured in blood and in graft tissue by an ELISA technique. Results showed that in the allograft, SDF-1 and VEGF tissue levels were significantly increased at D12 as compared to the isograft (SDF-1: 22.16 ng/mg vs. 5.69 ng/mg, t=3.38; VEGF: 28.3 pg/mg vs. 9.3 pg/mg, t=3.06). In allografted and isografted groups, MCP-1 tissue levels were higher at D0 as compared to the other time points, without any difference between the two groups. These results prompt us to consider cell therapy at D0 and D12 in this mouse model of aortic graft.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acthis.2011.10.001DOI Listing
October 2012

Heart rate reduction induced by the if current inhibitor ivabradine improves diastolic function and attenuates cardiac tissue hypoxia.

J Cardiovasc Pharmacol 2012 Mar;59(3):260-7

INSERM U644, Institut Hospitalier Recherche BioMedicale Normandie, IFRMP n°23, UFR de Médecine et de Pharmacie, Rouen, France.

Aims: Enhanced heart rate (HR) is a compensatory mechanism in chronic heart failure (CHF), preserving cardiac output, but at the cost of increased left ventricular (LV) oxygen consumption and impaired diastolic function. The HR reduction (HRR) induced by the If current inhibitor ivabradine prevents LV systolic dysfunction in CHF, but whether HRR improves LV diastolic function is unknown.

Methods: LV diastolic function and remodeling were assessed in rats with CHF after coronary ligation after long-term (90 days, starting 7 days after ligation) and delayed short-term (4 days, starting 93 days after ligation) ivabradine treatment (10 mg·kg·d).

Results: Long- and short-term HRR reduced LV end-diastolic pressure, LV relaxation, and LV end-diastolic pressure-volume relation. Simultaneously, LV hypoxia-inducible factor-1α expression was reduced. Long-term and, to a more marked extent, short-term HRR increased endothelial cell proliferation, associated after long-term HRR with the prevention of CHF-related LV capillary rarefaction. Long-term and, to a lesser extent, short-term HRR increased endothelial nitric oxide synthase expression, associated after long-term HRR with improved nitric oxide-dependent coronary vasodilatation.

Conclusions: Long-term HRR induced by ivabradine improves diastolic LV function probably involving attenuated hypoxia, reduced remodeling, and/or preserved nitric oxide bioavailability, resulting from processes triggered early after HRR initiation: angiogenesis and/or preservation of endothelial nitric oxide synthase expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/FJC.0b013e31823e5e01DOI Listing
March 2012

Association of menopause and hormone replacement therapy with large artery remodeling.

Fertil Steril 2011 Dec 6;96(6):1445-50. Epub 2011 Oct 6.

Université Paris Descartes, Assistance Publique-Hôpitaux de Paris, Hôtel-Dieu, Paris, France.

Objective: To evaluate the remodeling of large arteries according to age at menopause, duration of menopause, and use of hormone therapy (HT).

Design: A cross-sectional study consisting of baseline measurements of a multicentric randomized trial were used to evaluate arterial parameters.

Setting: The study was conducted in France, Belgium, and the Netherlands in academic hospitals and private clinics.

Patient(s): Postmenopausal women (n = 538) with mild hypercholesterolemia.

Intervention(s): None.

Main Outcome Measure(s): Common carotid artery intima-media thickness (CCA-IMT), central pulse pressure, and aortic stiffness (carotid-femoral pulse wave velocity) were measured and centrally controlled for quality. Multivariate regression analysis was used to assess the possible covariates associated with arterial parameters.

Result(s): Women were 58 ± 6 (mean ± SD) years of age with an age of 50 ± 5 at menopause and a mean duration of menopause of 8 ± 7 years. Lower age at menopause, time since menopause, and absence of HT use were independently associated with worsening of the arterial parameters. After multivariate analysis, HT was associated with a lower CCA-IMT (-40 μm [range -64 to -1]), whereas lower age at menopause and menopause duration were respectively associated with a CCA-IMT increase (25 μm/5 y and 27 μm/5 y). Similarly, values of central pulse pressure and pulse wave velocity were lower in HT users (-3.1 mm Hg [-5.1 to -0.9] and -0.31 m/s [-0.63 to -0.02], respectively) but worsened with age at menopause and menopause duration.

Conclusion(s): The age at menopause, the time since menopause, and the use of HT are independently associated with the thickening and stiffening of the large arteries.

Clinical Trial Registration Number: NCT00163163.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fertnstert.2011.09.010DOI Listing
December 2011

Arteriogenic therapy by intramyocardial sustained delivery of a novel growth factor combination prevents chronic heart failure.

Circulation 2011 Aug 8;124(9):1059-69. Epub 2011 Aug 8.

Inserm U644, Institute for Biomedical Research, Rouen University, 22 Blvd Gambetta, 76183 Rouen, France.

Background: Therapeutic angiogenesis is a promising approach for the treatment of cardiovascular diseases, including myocardial infarction and chronic heart failure. We aimed to improve proangiogenic therapies by identifying novel arteriogenic growth factor combinations, developing injectable delivery systems for spatiotemporally controlled growth factor release, and evaluating functional consequences of targeted intramyocardial growth factor delivery in chronic heart failure.

Methods And Results: First, we observed that fibroblast growth factor and hepatocyte growth factor synergistically stimulate vascular cell migration and proliferation in vitro. Using 2 in vivo angiogenesis assays (n=5 mice per group), we found that the growth factor combination results in a more potent and durable angiogenic response than either growth factor used alone. Furthermore, we determined that the molecular mechanisms involve potentiation of Akt and mitogen-activated protein kinase signal transduction pathways, as well as upregulation of angiogenic growth factor receptors. Next, we developed crosslinked albumin-alginate microcapsules that sequentially release fibroblast growth factor-2 and hepatocyte growth factor. Finally, in a rat model of chronic heart failure induced by coronary ligation (n=14 to 15 rats per group), we found that intramyocardial slow release of fibroblast growth factor-2 with hepatocyte growth factor potently stimulates angiogenesis and arteriogenesis and prevents cardiac hypertrophy and fibrosis, as determined by immunohistochemistry, leading to improved cardiac perfusion after 3 months, as shown by magnetic resonance imaging. These multiple beneficial effects resulted in reduced adverse cardiac remodeling and improved left ventricular function, as revealed by echocardiography.

Conclusion: Our data showing the selective advantage of using fibroblast growth factor-2 together with hepatocyte growth factor suggest that this growth factor combination may constitute an efficient novel treatment for chronic heart failure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.110.010264DOI Listing
August 2011