Publications by authors named "Christian Orrenius"

11 Publications

  • Page 1 of 1

Afatinib Is a New Therapeutic Approach in Chordoma with a Unique Ability to Target EGFR and Brachyury.

Mol Cancer Ther 2018 03 13;17(3):603-613. Epub 2017 Dec 13.

Oncology, Nerviano Medical Sciences, Nerviano, Milan, Italy.

Chordomas are rare bone tumors with no approved therapy. These tumors express several activated tyrosine kinase receptors, which prompted attempts to treat patients with tyrosine kinase inhibitors. Although clinical benefit was observed in phase II clinical trials with imatinib and sorafenib, and sporadically also with EGFR inhibitors, therapies evaluated to date have shown modest activity. With the goal of identifying new drugs with immediate therapeutic potential for chordoma patients, we collected clinically approved drugs and other advanced inhibitors of MET, PDGFRβ, and EGFR tyrosine kinases, and assessed their antiproliferative activity against a panel of chordoma cell lines. Chordoma cell lines were not responsive to MET and PDGFRβ inhibitors. U-CH1 and UM-Chor1 were sensitive to all EGFR inhibitors, whereas the remaining cell lines were generally insensitive to these drugs. Afatinib was the only EGFR inhibitor with activity across the chordoma panel. We then investigated the molecular mechanisms behind the responses observed and found that the antiproliferative ICs correlate with the unique ability of afatinib to promote degradation of EGFR and brachyury, an embryonic transcription factor considered a key driver of chordoma. Afatinib displayed potent antitumor efficacy in U-CH1, SF8894, CF322, and CF365 chordoma tumor models In the panel analyzed, high EGFR phosphorylation and low AXL and STK33 expression correlated with higher sensitivity to afatinib and deserve further investigation as potential biomarkers of response. These data support the use of afatinib in clinical trials and provide the rationale for the upcoming European phase II study on afatinib in advanced chordoma. .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-17-0324DOI Listing
March 2018

Discovery of Entrectinib: A New 3-Aminoindazole As a Potent Anaplastic Lymphoma Kinase (ALK), c-ros Oncogene 1 Kinase (ROS1), and Pan-Tropomyosin Receptor Kinases (Pan-TRKs) inhibitor.

J Med Chem 2016 Apr 30;59(7):3392-408. Epub 2016 Mar 30.

Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy.

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase responsible for the development of different tumor types. Despite the remarkable clinical activity of crizotinib (Xalkori), the first ALK inhibitor approved in 2011, the emergence of resistance mutations and of brain metastases frequently causes relapse in patients. Within our ALK drug discovery program, we identified compound 1, a novel 3-aminoindazole active on ALK in biochemical and in cellular assays. Its optimization led to compound 2 (entrectinib), a potent orally available ALK inhibitor active on ALK-dependent cell lines, efficiently penetrant the blood-brain barrier (BBB) in different animal species and highly efficacious in in vivo xenograft models. Moreover, entrectinib resulted to be strictly potent on the closely related tyrosine kinases ROS1 and TRKs recently found constitutively activated in several tumor types. Entrectinib is currently undergoing phase I/II clinical trial for the treatment of patients affected by ALK-, ROS1-, and TRK-positive tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.6b00064DOI Listing
April 2016

Discovery and optimization of pyrrolo[1,2-a]pyrazinones leads to novel and selective inhibitors of PIM kinases.

Bioorg Med Chem 2013 Dec 2;21(23):7364-80. Epub 2013 Oct 2.

Oncology, Nerviano Medical Sciences, viale Pasteur 10, 20014 Nerviano (MI), Italy. Electronic address:

A novel series of PIM inhibitors was derived from a combined effort in natural product-inspired library generation and screening. The novel pyrrolo[1,2-a]pyrazinones initial hits are inhibitors of PIM isoforms with IC50 values in the low micromolar range. The application of a rational optimization strategy, guided by the determination of the crystal structure of the complex in the kinase domain of PIM1 with compound 1, led to the discovery of compound 15a, which is a potent PIM kinases inhibitor exhibiting excellent selectivity against a large panel of kinases, representative of each family. The synthesis, structure-activity relationship studies, and pharmacokinetic data of compounds from this inhibitor class are presented herein. Furthermore, the cellular activities including inhibition of cell growth and modulation of downstream targets are also described.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2013.09.054DOI Listing
December 2013

Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death.

Nat Chem Biol 2013 Sep 28;9(9):548-56. Epub 2013 Jul 28.

Business Unit Oncology, Nerviano Medical Sciences, Nerviano, Italy.

VCP (also known as p97 or Cdc48p in yeast) is an AAA(+) ATPase regulating endoplasmic reticulum-associated degradation. After high-throughput screening, we developed compounds that inhibit VCP via different mechanisms, including covalent modification of an active site cysteine and a new allosteric mechanism. Using photoaffinity labeling, structural analysis and mutagenesis, we mapped the binding site of allosteric inhibitors to a region spanning the D1 and D2 domains of adjacent protomers encompassing elements important for nucleotide-state sensing and ATP hydrolysis. These compounds induced an increased affinity for nucleotides. Interference with nucleotide turnover in individual subunits and distortion of interprotomer communication cooperated to impair VCP enzymatic activity. Chemical expansion of this allosteric class identified NMS-873, the most potent and specific VCP inhibitor described to date, which activated the unfolded protein response, interfered with autophagy and induced cancer cell death. The consistent pattern of cancer cell killing by covalent and allosteric inhibitors provided critical validation of VCP as a cancer target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nchembio.1313DOI Listing
September 2013

Alkylsulfanyl-1,2,4-triazoles, a new class of allosteric valosine containing protein inhibitors. Synthesis and structure-activity relationships.

J Med Chem 2013 Jan 4;56(2):437-50. Epub 2013 Jan 4.

Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy.

Valosine containing protein (VCP), also known as p97, is a member of AAA ATPase family that is involved in several biological processes and plays a central role in the ubiquitin-mediated degradation of misfolded proteins. VCP is an ubiquitously expressed, highly abundant protein and has been found overexpressed in many tumor types, sometimes associated with poor prognosis. In this respect, VCP has recently received a great deal of attention as a potential new target for cancer therapy. In this paper, the discovery and structure-activity relationships of alkylsulfanyl-1,2,4-triazoles, a new class of potent, allosteric VCP inhibitors, are described. Medicinal chemistry manipulation of compound 1, identified via HTS, led to the discovery of potent and selective inhibitors with submicromolar activity in cells and clear mechanism of action at consistent doses. This represents a first step toward a new class of potential anticancer agents.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm3013213DOI Listing
January 2013

The generation of purinome-targeted libraries as a means to diversify ATP-mimetic chemical classes for lead finding.

Mol Divers 2012 Feb 15;16(1):27-51. Epub 2012 Feb 15.

Oncology Research, Nerviano Medical Sciences, Viale Pasteur 10, 20014, Nerviano, Italy.

The generation of novel chemotypes in support of our oncology research projects expanded in recent years from a canonical design of kinase-targeted compound libraries to a broader interpretation of purinome-targeted libraries (PTL) addressing the specificity of cancer relevant targets such as kinases and ATPases. Successful screening of structurally diverse ATP-binding targets requires compound libraries covering multiple design elements, which may include phosphate surrogate moieties in ATPase inhibitors or far reaching lipophilic residues stabilizing inactive kinase conformations. Here, we exemplify the design and preparation of drug-like combinatorial libraries and report significantly enhanced screening performance on purinomic targets. We compared overall hit rates of PTL with a simultaneously tested unbiased collection of 200,000 compounds and found consistent superiority of the targeted libraries in all cases. We also analyzed the performance of the largest targeted libraries in comparison with each other and often found striking differences in how a specific target responds to various chemotypes and to whole collections.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11030-012-9361-6DOI Listing
February 2012

Linear and nonlinear methods in modeling the aqueous solubility of organic compounds.

J Chem Inf Model 2005 Jan-Feb;45(1):170-6

CADD, Pfizer Global Research and Development, Ann Arbor Laboratories, 2800 Plymouth Road, Ann Arbor, Michigan 48105, USA.

Solubility data for 930 diverse compounds have been analyzed using linear Partial Least Square (PLS) and nonlinear PLS methods, Continuum Regression (CR), and Neural Networks (NN). 1D and 2D descriptors from MOE package in combination with E-state or ISIS keys have been used. The best model was obtained using linear PLS for a combination between 22 MOE descriptors and 65 ISIS keys. It has a correlation coefficient (r2) of 0.935 and a root-mean-square error (RMSE) of 0.468 log molar solubility (log S(w)). The model validated on a test set of 177 compounds not included in the training set has r2 0.911 and RMSE 0.475 log S(w). The descriptors were ranked according to their importance, and at the top of the list have been found the 22 MOE descriptors. The CR model produced results as good as PLS, and because of the way in which cross-validation has been done it is expected to be a valuable tool in prediction besides PLS model. The statistics obtained using nonlinear methods did not surpass those got with linear ones. The good statistic obtained for linear PLS and CR recommends these models to be used in prediction when it is difficult or impossible to make experimental measurements, for virtual screening, combinatorial library design, and efficient leads optimization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci049797uDOI Listing
February 2005

Influence of molecular flexibility and polar surface area metrics on oral bioavailability in the rat.

J Med Chem 2004 Nov;47(24):6104-7

Computational Chemistry and Nonclinical Statistics and CNS Drug Metabolism, Pfizer Global R&D, Groton Laboratories, Eastern Point Road, 8200-36, Groton, Connecticut 06340, USA.

The relationship of rotatable bond count (N(rot)) and polar surface area (PSA) with oral bioavailability in rats was examined for 434 Pharmacia compounds and compared with an earlier report from Veber et al. (J. Med. Chem. 2002, 45, 2615). N(rot) and PSA were calculated with QikProp or Cerius2. The resulting correlations depended on the calculation method and the therapeutic class within the data superset. These results underscore that such generalizations must be used with caution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm0306529DOI Listing
November 2004

Model based on GRID-derived descriptors for estimating CYP3A4 enzyme stability of potential drug candidates.

J Comput Aided Mol Des 2004 Mar;18(3):155-66

Pharmacokinetics, Dynamics and Metabolism, Gruppo Pfizer Inc., Viale Pasteur 10, I-20014 Nerviano (Mi), Italy.

A number of computational approaches are being proposed for an early optimization of ADME (absorption, distribution, metabolism and excretion) properties to increase the success rate in drug discovery. The present study describes the development of an in silico model able to estimate, from the three-dimensional structure of a molecule, the stability of a compound with respect to the human cytochrome P450 (CYP) 3A4 enzyme activity. Stability data were obtained by measuring the amount of unchanged compound remaining after a standardized incubation with human cDNA-expressed CYP3A4. The computational method transforms the three-dimensional molecular interaction fields (MIFs) generated from the molecular structure into descriptors (VolSurf and Almond procedures). The descriptors were correlated to the experimental metabolic stability classes by a partial least squares discriminant procedure. The model was trained using a set of 1800 compounds from the Pharmacia collection and was validated using two test sets: the first one including 825 compounds from the Pharmacia collection and the second one consisting of 20 known drugs. This model correctly predicted 75% of the first and 85% of the second test set and showed a precision above 86% to correctly select metabolically stable compounds. The model appears a valuable tool in the design of virtual libraries to bias the selection toward more stable compounds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1023/b:jcam.0000035184.11906.c2DOI Listing
March 2004