Publications by authors named "Christian Fuchsberger"

99 Publications

Frequency of Heterozygous Parkin () Variants and Penetrance of Parkinson's Disease Risk Markers in the Population-Based CHRIS Cohort.

Front Neurol 2021 9;12:706145. Epub 2021 Aug 9.

Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.

Mutations in the () gene are the most frequent cause of autosomal recessive early-onset Parkinson's disease (PD). Heterozygous mutation carriers might also be at increased risk for developing clinical symptoms of PD. Given the high frequency of heterozygous mutations in the general population, it is essential to have better estimates of the penetrance of these variants, and to investigate, which clinical and biochemical markers are present in carriers and thus potentially useful for identifying those individuals at greater risk of developing clinical symptoms later in life. In the present study, we ascertained the frequency of heterozygous mutation carriers in a large population sample of the Cooperative Health Research in South Tyrol (CHRIS) study, and screened for reported PD risk markers. 164 confirmed heterozygous mutation carriers were compared with 2,582 controls. A higher number of heterozygous mutation carriers reported a detectable increase in an akinesia-related phenotype, and a higher percentage of carriers had manifested diabetes. We also observed lower resting heart rate in the mutation carriers. Extending our risk analyses to a larger number of potential carriers and non-carriers using genotype imputation ( = 299 carriers and = 7,127 non-carriers), from previously published biomarkers we also observed a higher neutrophil-to-lymphocyte ratio (NLR) and lower serum albumin and sodium levels in the heterozygous variant carriers. These results identify a set of biomarkers that might be useful either individually or as an ensemble to identify variant carriers at greater risk of health issues due to carrier status.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fneur.2021.706145DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382284PMC
August 2021

The trans-ancestral genomic architecture of glycemic traits.

Nat Genet 2021 06 31;53(6):840-860. Epub 2021 May 31.

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00852-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610958PMC
June 2021

Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.

Nature 2021 02 10;590(7845):290-299. Epub 2021 Feb 10.

The Broad Institute of MIT and Harvard, Cambridge, MA, USA.

The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes). In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03205-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875770PMC
February 2021

Loss-of-function genomic variants highlight potential therapeutic targets for cardiovascular disease.

Nat Commun 2020 12 18;11(1):6417. Epub 2020 Dec 18.

The Institute for Translational Genomics and Population Sciences, Department of Pediatrics and Los Angeles Biomedical Research Institute, Harbor-UCLA, Torrance, CA, USA.

Pharmaceutical drugs targeting dyslipidemia and cardiovascular disease (CVD) may increase the risk of fatty liver disease and other metabolic disorders. To identify potential novel CVD drug targets without these adverse effects, we perform genome-wide analyses of participants in the HUNT Study in Norway (n = 69,479) to search for protein-altering variants with beneficial impact on quantitative blood traits related to cardiovascular disease, but without detrimental impact on liver function. We identify 76 (11 previously unreported) presumed causal protein-altering variants associated with one or more CVD- or liver-related blood traits. Nine of the variants are predicted to result in loss-of-function of the protein. This includes ZNF529:p.K405X, which is associated with decreased low-density-lipoprotein (LDL) cholesterol (P = 1.3 × 10) without being associated with liver enzymes or non-fasting blood glucose. Silencing of ZNF529 in human hepatoma cells results in upregulation of LDL receptor and increased LDL uptake in the cells. This suggests that inhibition of ZNF529 or its gene product should be prioritized as a novel candidate drug target for treating dyslipidemia and associated CVD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-20086-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7749177PMC
December 2020

Adiponectin GWAS loci harboring extensive allelic heterogeneity exhibit distinct molecular consequences.

PLoS Genet 2020 09 11;16(9):e1009019. Epub 2020 Sep 11.

Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America.

Loci identified in genome-wide association studies (GWAS) can include multiple distinct association signals. We sought to identify the molecular basis of multiple association signals for adiponectin, a hormone involved in glucose regulation secreted almost exclusively from adipose tissue, identified in the Metabolic Syndrome in Men (METSIM) study. With GWAS data for 9,262 men, four loci were significantly associated with adiponectin: ADIPOQ, CDH13, IRS1, and PBRM1. We performed stepwise conditional analyses to identify distinct association signals, a subset of which are also nearly independent (lead variant pairwise r2<0.01). Two loci exhibited allelic heterogeneity, ADIPOQ and CDH13. Of seven association signals at the ADIPOQ locus, two signals colocalized with adipose tissue expression quantitative trait loci (eQTLs) for three transcripts: trait-increasing alleles at one signal were associated with increased ADIPOQ and LINC02043, while trait-increasing alleles at the other signal were associated with decreased ADIPOQ-AS1. In reporter assays, adiponectin-increasing alleles at two signals showed corresponding directions of effect on transcriptional activity. Putative mechanisms for the seven ADIPOQ signals include a missense variant (ADIPOQ G90S), a splice variant, a promoter variant, and four enhancer variants. Of two association signals at the CDH13 locus, the first signal consisted of promoter variants, including the lead adipose tissue eQTL variant for CDH13, while a second signal included a distal intron 1 enhancer variant that showed ~2-fold allelic differences in transcriptional reporter activity. Fine-mapping and experimental validation demonstrated that multiple, distinct association signals at these loci can influence multiple transcripts through multiple molecular mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1009019DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511027PMC
September 2020

Sequencing and imputation in GWAS: Cost-effective strategies to increase power and genomic coverage across diverse populations.

Genet Epidemiol 2020 09 9;44(6):537-549. Epub 2020 Jun 9.

Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan.

A key aim for current genome-wide association studies (GWAS) is to interrogate the full spectrum of genetic variation underlying human traits, including rare variants, across populations. Deep whole-genome sequencing is the gold standard to fully capture genetic variation, but remains prohibitively expensive for large sample sizes. Array genotyping interrogates a sparser set of variants, which can be used as a scaffold for genotype imputation to capture a wider set of variants. However, imputation quality depends crucially on reference panel size and genetic distance from the target population. Here, we consider sequencing a subset of GWAS participants and imputing the rest using a reference panel that includes both sequenced GWAS participants and an external reference panel. We investigate how imputation quality and GWAS power are affected by the number of participants sequenced for admixed populations (African and Latino Americans) and European population isolates (Sardinians and Finns), and identify powerful, cost-effective GWAS designs given current sequencing and array costs. For populations that are well-represented in existing reference panels, we find that array genotyping alone is cost-effective and well-powered to detect common- and rare-variant associations. For poorly represented populations, sequencing a subset of participants is often most cost-effective, and can substantially increase imputation quality and GWAS power.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/gepi.22326DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449570PMC
September 2020

Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction.

Nat Commun 2020 05 21;11(1):2542. Epub 2020 May 21.

Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.

The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-15706-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242331PMC
May 2020

Microbiota, type 2 diabetes and non-alcoholic fatty liver disease: protocol of an observational study.

J Transl Med 2019 12 4;17(1):408. Epub 2019 Dec 4.

Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, 39100, Bolzano, Italy.

Background: Non-alcoholic fatty liver disease (NAFLD) is characterized by triglyceride accumulation in the hepatocytes in the absence of alcohol overconsumption, commonly associated with insulin resistance and obesity. Both NAFLD and type 2 diabetes (T2D) are characterized by an altered microbiota composition, however the role of the microbiota in NAFLD and T2D is not well understood. To assess the relationship between alteration in the microbiota and NAFLD while dissecting the role of T2D, we established a nested study on T2D and non-T2D individuals within the Cooperative Health Research In South Tyrol (CHRIS) study, called the CHRIS-NAFLD study. Here, we present the study protocol along with baseline and follow-up characteristics of study participants.

Methods: Among the first 4979 CHRIS study participants, 227 individuals with T2D were identified and recalled, along with 227 age- and sex-matched non-T2D individuals. Participants underwent ultrasound and transient elastography examination to evaluate the presence of hepatic steatosis and liver stiffness. Additionally, sampling of saliva and faeces, biochemical measurements and clinical interviews were carried out.

Results: We recruited 173 T2D and 183 non-T2D participants (78% overall response rate). Hepatic steatosis was more common in T2D (63.7%) than non-T2D (36.3%) participants. T2D participants also had higher levels of liver stiffness (median 4.8 kPa, interquartile range (IQR) 3.7, 5.9) than non-T2D participants (median 3.9 kPa, IQR 3.3, 5.1). The non-invasive scoring systems like the NAFLD fibrosis score (NFS) suggests an increased liver fibrosis in T2D (mean - 0.55, standard deviation, SD, 1.30) than non-T2D participants (mean - 1.30, SD, 1.17).

Discussion: Given the comprehensive biochemical and clinical characterization of study participants, once the bioinformatics classification of the microbiota will be completed, the CHRIS-NAFLD study will become a useful resource to further our understanding of the relationship between microbiota, T2D and NAFLD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12967-019-02130-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891972PMC
December 2019

Colocalization of GWAS and eQTL signals at loci with multiple signals identifies additional candidate genes for body fat distribution.

Hum Mol Genet 2019 12;28(24):4161-4172

Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.

Integration of genome-wide association study (GWAS) signals with expression quantitative trait loci (eQTL) studies enables identification of candidate genes. However, evaluating whether nearby signals may share causal variants, termed colocalization, is affected by the presence of allelic heterogeneity, different variants at the same locus impacting the same phenotype. We previously identified eQTL in subcutaneous adipose tissue from 770 participants in the Metabolic Syndrome in Men (METSIM) study and detected 15 eQTL signals that colocalized with GWAS signals for waist-hip ratio adjusted for body mass index (WHRadjBMI) from the Genetic Investigation of Anthropometric Traits consortium. Here, we reevaluated evidence of colocalization using two approaches, conditional analysis and the Bayesian test COLOC, and show that providing COLOC with approximate conditional summary statistics at multi-signal GWAS loci can reconcile disagreements in colocalization classification between the two tests. Next, we performed conditional analysis on the METSIM subcutaneous adipose tissue data to identify conditionally distinct or secondary eQTL signals. We used the two approaches to test for colocalization with WHRadjBMI GWAS signals and evaluated the differences in colocalization classification between the two tests. Through these analyses, we identified four GWAS signals colocalized with secondary eQTL signals for FAM13A, SSR3, GRB14 and FMO1. Thus, at loci with multiple eQTL and/or GWAS signals, analyzing each signal independently enabled additional candidate genes to be identified.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddz263DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202621PMC
December 2019

Associations of autozygosity with a broad range of human phenotypes.

Nat Commun 2019 10 31;10(1):4957. Epub 2019 Oct 31.

Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands.

In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (F) for >1.4 million individuals, we show that F is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: F equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of F are confirmed within full-sibling pairs, where the variation in F is independent of all environmental confounding.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-12283-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823371PMC
October 2019

KCND3 potassium channel gene variant confers susceptibility to electrocardiographic early repolarization pattern.

JCI Insight 2019 12 5;4(23). Epub 2019 Dec 5.

Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.

BACKGROUNDThe presence of an early repolarization pattern (ERP) on the surface ECG is associated with risk of ventricular fibrillation and sudden cardiac death. Family studies have shown that ERP is a highly heritable trait, but molecular genetic determinants are unknown.METHODSTo identify genetic susceptibility loci for ERP, we performed a GWAS and meta-analysis in 2,181 cases and 23,641 controls of European ancestry.RESULTSWe identified a genome-wide significant (P < 5 × 10-8) locus in the potassium voltage-gated channel subfamily D member 3 (KCND3) gene that was successfully replicated in additional 1,124 cases and 12,510 controls. A subsequent joint meta-analysis of the discovery and replication cohorts identified rs1545300 as the lead SNP at the KCND3 locus (OR 0.82 per minor T allele, P = 7.7 × 10-12) but did not reveal additional loci. Colocalization analyses indicate causal effects of KCND3 gene expression levels on ERP in both cardiac left ventricle and tibial artery.CONCLUSIONSIn this study, we identified for the first time to our knowledge a genome-wide significant association of a genetic variant with ERP. Our findings of a locus in the KCND3 gene provide insights not only into the genetic determinants but also into the pathophysiological mechanism of ERP, discovering a promising candidate for functional studies.FUNDINGThis project was funded by the German Center for Cardiovascular Research (DZHK Shared Expertise SE081 - STATS). For detailed funding information per study, see the Supplemental Acknowledgments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/jci.insight.131156DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962032PMC
December 2019

Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels.

Nat Genet 2019 10 2;51(10):1459-1474. Epub 2019 Oct 2.

Department of Neurobiology, Care Sciences and Society, Division of Family Medicine and Primary Care, Karolinska Institutet, Stockholm, Sweden.

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0504-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858555PMC
October 2019

Adipose Tissue Gene Expression Associations Reveal Hundreds of Candidate Genes for Cardiometabolic Traits.

Am J Hum Genet 2019 10 26;105(4):773-787. Epub 2019 Sep 26.

Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA. Electronic address:

Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic traits including type 2 diabetes (T2D), lipid levels, body fat distribution, and adiposity, although most causal genes remain unknown. We used subcutaneous adipose tissue RNA-seq data from 434 Finnish men from the METSIM study to identify 9,687 primary and 2,785 secondary cis-expression quantitative trait loci (eQTL; <1 Mb from TSS, FDR < 1%). Compared to primary eQTL signals, secondary eQTL signals were located further from transcription start sites, had smaller effect sizes, and were less enriched in adipose tissue regulatory elements compared to primary signals. Among 2,843 cardiometabolic GWAS signals, 262 colocalized by LD and conditional analysis with 318 transcripts as primary and conditionally distinct secondary cis-eQTLs, including some across ancestries. Of cardiometabolic traits examined for adipose tissue eQTL colocalizations, waist-hip ratio (WHR) and circulating lipid traits had the highest percentage of colocalized eQTLs (15% and 14%, respectively). Among alleles associated with increased cardiometabolic GWAS risk, approximately half (53%) were associated with decreased gene expression level. Mediation analyses of colocalized genes and cardiometabolic traits within the 434 individuals provided further evidence that gene expression influences variant-trait associations. These results identify hundreds of candidate genes that may act in adipose tissue to influence cardiometabolic traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2019.09.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6817527PMC
October 2019

Combining sequence data from multiple studies: Impact of analysis strategies on rare variant calling and association results.

Genet Epidemiol 2020 01 14;44(1):41-51. Epub 2019 Sep 14.

Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan.

Individual sequencing studies often have limited sample sizes and so limited power to detect trait associations with rare variants. A common strategy is to aggregate data from multiple studies. For studying rare variants, jointly calling all samples together is the gold standard strategy but can be difficult to implement due to privacy restrictions and computational burden. Here, we compare joint calling to the alternative of single-study calling in terms of variant detection sensitivity and genotype accuracy as a function of sequencing coverage and assess their impact on downstream association analysis. To do so, we analyze deep-coverage (~82×) exome and low-coverage (~5×) genome sequence data on 2,250 individuals from the Genetics of Type 2 Diabetes study jointly and separately within five geographic cohorts. For rare single nucleotide variants (SNVs): (a) ≥97% of discovered SNVs are found by both calling strategies; (b) nonreference concordance with a set of highly accurate genotypes is ≥99% for both calling strategies; (c) meta-analysis has similar power to joint analysis in deep-coverage sequence data but can be less powerful in low-coverage sequence data. Given similar data processing and quality control steps, we recommend single-study calling as a viable alternative to joint calling for analyzing SNVs of all minor allele frequency in deep-coverage data.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/gepi.22261DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231418PMC
January 2020

Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria.

Nat Commun 2019 09 11;10(1):4130. Epub 2019 Sep 11.

Department of Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT, USA.

Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-11576-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739370PMC
September 2019

Evaluation of the role of STAP1 in Familial Hypercholesterolemia.

Sci Rep 2019 08 19;9(1):11995. Epub 2019 Aug 19.

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutrition (including Lipid Metabolism), Berlin, Germany.

Familial hypercholesterolemia (FH) is characterised by elevated serum levels of low-density lipoprotein cholesterol (LDL-C) and a substantial risk for cardiovascular disease. The autosomal-dominant FH is mostly caused by mutations in LDLR (low density lipoprotein receptor), APOB (apolipoprotein B), and PCSK9 (proprotein convertase subtilisin/kexin). Recently, STAP1 has been suggested as a fourth causative gene. We analyzed STAP1 in 75 hypercholesterolemic patients from Berlin, Germany, who are negative for mutations in canonical FH genes. In 10 patients with negative family history, we additionally screened for disease causing variants in LDLRAP1 (low density lipoprotein receptor adaptor protein 1), associated with autosomal-recessive hypercholesterolemia. We identified one STAP1 variant predicted to be disease causing. To evaluate association of serum lipid levels and STAP1 carrier status, we analyzed 20 individuals from a population based cohort, the Cooperative Health Research in South Tyrol (CHRIS) study, carrying rare STAP1 variants. Out of the same cohort we randomly selected 100 non-carriers as control. In the Berlin FH cohort STAP1 variants were rare. In the CHRIS cohort, we obtained no statistically significant differences between carriers and non-carriers of STAP1 variants with respect to lipid traits. Until such an association has been verified in more individuals with genetic variants in STAP1, we cannot estimate whether STAP1 generally is a causative gene for FH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-48402-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700100PMC
August 2019

A catalog of genetic loci associated with kidney function from analyses of a million individuals.

Nat Genet 2019 06 31;51(6):957-972. Epub 2019 May 31.

Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clincial Sciences in Malmö, Lund University, Malmö, Sweden.

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0407-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698888PMC
June 2019

Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls.

Nature 2019 06 22;570(7759):71-76. Epub 2019 May 22.

Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, South Korea.

Protein-coding genetic variants that strongly affect disease risk can yield relevant clues to disease pathogenesis. Here we report exome-sequencing analyses of 20,791 individuals with type 2 diabetes (T2D) and 24,440 non-diabetic control participants from 5 ancestries. We identify gene-level associations of rare variants (with minor allele frequencies of less than 0.5%) in 4 genes at exome-wide significance, including a series of more than 30 SLC30A8 alleles that conveys protection against T2D, and in 12 gene sets, including those corresponding to T2D drug targets (P = 6.1 × 10) and candidate genes from knockout mice (P = 5.2 × 10). Within our study, the strongest T2D gene-level signals for rare variants explain at most 25% of the heritability of the strongest common single-variant signals, and the gene-level effect sizes of the rare variants that we observed in established T2D drug targets will require 75,000-185,000 sequenced cases to achieve exome-wide significance. We propose a method to interpret these modest rare-variant associations and to incorporate these associations into future target or gene prioritization efforts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-019-1231-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6699738PMC
June 2019

Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders.

Am J Hum Genet 2018 11;103(5):691-706

Department of Epidemiology and Prevention, Public Health Sciences, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.

C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p < 5 × 10). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2018.09.009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218410PMC
November 2018

Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation.

Nat Commun 2018 10 26;9(1):4455. Epub 2018 Oct 26.

Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA.

Thyroid dysfunction is an important public health problem, which affects 10% of the general population and increases the risk of cardiovascular morbidity and mortality. Many aspects of thyroid hormone regulation have only partly been elucidated, including its transport, metabolism, and genetic determinants. Here we report a large meta-analysis of genome-wide association studies for thyroid function and dysfunction, testing 8 million genetic variants in up to 72,167 individuals. One-hundred-and-nine independent genetic variants are associated with these traits. A genetic risk score, calculated to assess their combined effects on clinical end points, shows significant associations with increased risk of both overt (Graves' disease) and subclinical thyroid disease, as well as clinical complications. By functional follow-up on selected signals, we identify a novel thyroid hormone transporter (SLC17A4) and a metabolizing enzyme (AADAT). Together, these results provide new knowledge about thyroid hormone physiology and disease, opening new possibilities for therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-06356-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203810PMC
October 2018

emeraLD: rapid linkage disequilibrium estimation with massive datasets.

Bioinformatics 2019 01;35(1):164-166

Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.

Summary: Estimating linkage disequilibrium (LD) is essential for a wide range of summary statistics-based association methods for genome-wide association studies. Large genetic datasets, e.g. the TOPMed WGS project and UK Biobank, enable more accurate and comprehensive LD estimates, but increase the computational burden of LD estimation. Here, we describe emeraLD (Efficient Methods for Estimation and Random Access of LD), a computational tool that leverages sparsity and haplotype structure to estimate LD up to 2 orders of magnitude faster than current tools.

Availability And Implementation: emeraLD is implemented in C++, and is open source under GPLv3. Source code and documentation are freely available at http://github.com/statgen/emeraLD.

Supplementary Information: Supplementary data are available at Bioinformatics online.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bty547DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298049PMC
January 2019

Imputation-Aware Tag SNP Selection To Improve Power for Large-Scale, Multi-ethnic Association Studies.

G3 (Bethesda) 2018 10 3;8(10):3255-3267. Epub 2018 Oct 3.

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029

The emergence of very large cohorts in genomic research has facilitated a focus on genotype-imputation strategies to power rare variant association. These strategies have benefited from improvements in imputation methods and association tests, however little attention has been paid to ways in which array design can increase rare variant association power. Therefore, we developed a novel framework to select tag SNPs using the reference panel of 26 populations from Phase 3 of the 1000 Genomes Project. We evaluate tag SNP performance mean imputed r at untyped sites using leave-one-out internal validation and standard imputation methods, rather than pairwise linkage disequilibrium. Moving beyond pairwise metrics allows us to account for haplotype diversity across the genome for improve imputation accuracy and demonstrates population-specific biases from pairwise estimates. We also examine array design strategies that contrast multi-ethnic cohorts single populations, and show a boost in performance for the former can be obtained by prioritizing tag SNPs that contribute information across multiple populations simultaneously. Using our framework, we demonstrate increased imputation accuracy for rare variants (frequency < 1%) by 0.5-3.1% for an array of one million sites and 0.7-7.1% for an array of 500,000 sites, depending on the population. Finally, we show how recent explosive growth in non-African populations means tag SNPs capture on average 30% fewer other variants than in African populations. The unified framework presented here will enable investigators to make informed decisions for the design of new arrays, and help empower the next phase of rare variant association for global health.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1534/g3.118.200502DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169386PMC
October 2018

A Common Type 2 Diabetes Risk Variant Potentiates Activity of an Evolutionarily Conserved Islet Stretch Enhancer and Increases C2CD4A and C2CD4B Expression.

Am J Hum Genet 2018 04;102(4):620-635

Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Institute of Systems Genomics, University of Connecticut Health Center, Farmington, CT 06032, USA. Electronic address:

Genome-wide association studies (GWASs) and functional genomics approaches implicate enhancer disruption in islet dysfunction and type 2 diabetes (T2D) risk. We applied genetic fine-mapping and functional (epi)genomic approaches to a T2D- and proinsulin-associated 15q22.2 locus to identify a most likely causal variant, determine its direction of effect, and elucidate plausible target genes. Fine-mapping and conditional analyses of proinsulin levels of 8,635 non-diabetic individuals from the METSIM study support a single association signal represented by a cluster of 16 strongly associated (p < 10) variants in high linkage disequilibrium (r > 0.8) with the GWAS index SNP rs7172432. These variants reside in an evolutionarily and functionally conserved islet and β cell stretch or super enhancer; the most strongly associated variant (rs7163757, p = 3 × 10) overlaps a conserved islet open chromatin site. DNA sequence containing the rs7163757 risk allele displayed 2-fold higher enhancer activity than the non-risk allele in reporter assays (p < 0.01) and was differentially bound by β cell nuclear extract proteins. Transcription factor NFAT specifically potentiated risk-allele enhancer activity and altered patterns of nuclear protein binding to the risk allele in vitro, suggesting that it could be a factor mediating risk-allele effects. Finally, the rs7163757 proinsulin-raising and T2D risk allele (C) was associated with increased expression of C2CD4B, and possibly C2CD4A, both of which were induced by inflammatory cytokines, in human islets. Together, these data suggest that rs7163757 contributes to genetic risk of islet dysfunction and T2D by increasing NFAT-mediated islet enhancer activity and modulating C2CD4B, and possibly C2CD4A, expression in (patho)physiologic states.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2018.02.020DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985342PMC
April 2018

Identification of seven novel loci associated with amino acid levels using single-variant and gene-based tests in 8545 Finnish men from the METSIM study.

Hum Mol Genet 2018 05;27(9):1664-1674

Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA.

Comprehensive metabolite profiling captures many highly heritable traits, including amino acid levels, which are potentially sensitive biomarkers for disease pathogenesis. To better understand the contribution of genetic variation to amino acid levels, we performed single variant and gene-based tests of association between nine serum amino acids (alanine, glutamine, glycine, histidine, isoleucine, leucine, phenylalanine, tyrosine, and valine) and 16.6 million genotyped and imputed variants in 8545 non-diabetic Finnish men from the METabolic Syndrome In Men (METSIM) study with replication in Northern Finland Birth Cohort (NFBC1966). We identified five novel loci associated with amino acid levels (P = < 5×10-8): LOC157273/PPP1R3B with glycine (rs9987289, P = 2.3×10-26); ZFHX3 (chr16:73326579, minor allele frequency (MAF) = 0.42%, P = 3.6×10-9), LIPC (rs10468017, P = 1.5×10-8), and WWOX (rs9937914, P = 3.8×10-8) with alanine; and TRIB1 with tyrosine (rs28601761, P = 8×10-9). Gene-based tests identified two novel genes harboring missense variants of MAF <1% that show aggregate association with amino acid levels: PYCR1 with glycine (Pgene = 1.5×10-6) and BCAT2 with valine (Pgene = 7.4×10-7); neither gene was implicated by single variant association tests. These findings are among the first applications of gene-based tests to identify new loci for amino acid levels. In addition to the seven novel gene associations, we identified five independent signals at established amino acid loci, including two rare variant signals at GLDC (rs138640017, MAF=0.95%, Pconditional = 5.8×10-40) with glycine levels and HAL (rs141635447, MAF = 0.46%, Pconditional = 9.4×10-11) with histidine levels. Examination of all single variant association results in our data revealed a strong inverse relationship between effect size and MAF (Ptrend<0.001). These novel signals provide further insight into the molecular mechanisms of amino acid metabolism and potentially, their perturbations in disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddy067DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905595PMC
May 2018

Evaluating the contribution of rare variants to type 2 diabetes and related traits using pedigrees.

Proc Natl Acad Sci U S A 2018 01 26;115(2):379-384. Epub 2017 Dec 26.

Department of Statistics, Seoul National University, Seoul 08826, Republic of Korea.

A major challenge in evaluating the contribution of rare variants to complex disease is identifying enough copies of the rare alleles to permit informative statistical analysis. To investigate the contribution of rare variants to the risk of type 2 diabetes (T2D) and related traits, we performed deep whole-genome analysis of 1,034 members of 20 large Mexican-American families with high prevalence of T2D. If rare variants of large effect accounted for much of the diabetes risk in these families, our experiment was powered to detect association. Using gene expression data on 21,677 transcripts for 643 pedigree members, we identified evidence for large-effect rare-variant -expression quantitative trait loci that could not be detected in population studies, validating our approach. However, we did not identify any rare variants of large effect associated with T2D, or the related traits of fasting glucose and insulin, suggesting that large-effect rare variants account for only a modest fraction of the genetic risk of these traits in this sample of families. Reliable identification of large-effect rare variants will require larger samples of extended pedigrees or different study designs that further enrich for such variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1705859115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777025PMC
January 2018

Sequence data and association statistics from 12,940 type 2 diabetes cases and controls.

Sci Data 2017 12 19;4:170179. Epub 2017 Dec 19.

Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/sdata.2017.179DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735917PMC
December 2017

Enrichment of colorectal cancer associations in functional regions: Insight for using epigenomics data in the analysis of whole genome sequence-imputed GWAS data.

PLoS One 2017 21;12(11):e0186518. Epub 2017 Nov 21.

Department Genome Sciences, University of Washington, Seattle, Washington, United States of America.

Background: The evaluation of less frequent genetic variants and their effect on complex disease pose new challenges for genomic research. To investigate whether epigenetic data can be used to inform aggregate rare-variant association methods (RVAM), we assessed whether variants more significantly associated with colorectal cancer (CRC) were preferentially located in non-coding regulatory regions, and whether enrichment was specific to colorectal tissues.

Methods: Active regulatory elements (ARE) were mapped using data from 127 tissues and cell-types from NIH Roadmap Epigenomics and Encyclopedia of DNA Elements (ENCODE) projects. We investigated whether CRC association p-values were more significant for common variants inside versus outside AREs, or 2) inside colorectal (CR) AREs versus AREs of other tissues and cell-types. We employed an integrative epigenomic RVAM for variants with allele frequency <1%. Gene sets were defined as ARE variants within 200 kilobases of a transcription start site (TSS) using either CR ARE or ARE from non-digestive tissues. CRC-set association p-values were used to evaluate enrichment of less frequent variant associations in CR ARE versus non-digestive ARE.

Results: ARE from 126/127 tissues and cell-types were significantly enriched for stronger CRC-variant associations. Strongest enrichment was observed for digestive tissues and immune cell types. CR-specific ARE were also enriched for stronger CRC-variant associations compared to ARE combined across non-digestive tissues (p-value = 9.6 × 10-4). Additionally, we found enrichment of stronger CRC association p-values for rare variant sets of CR ARE compared to non-digestive ARE (p-value = 0.029).

Conclusions: Integrative epigenomic RVAM may enable discovery of less frequent variants associated with CRC, and ARE of digestive and immune tissues are most informative. Although distance-based aggregation of less frequent variants in CR ARE surrounding TSS showed modest enrichment, future association studies would likely benefit from joint analysis of transcriptomes and epigenomes to better link regulatory variation with target genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186518PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5697874PMC
December 2017

Common, low-frequency, and rare genetic variants associated with lipoprotein subclasses and triglyceride measures in Finnish men from the METSIM study.

PLoS Genet 2017 Oct 30;13(10):e1007079. Epub 2017 Oct 30.

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.

Lipid and lipoprotein subclasses are associated with metabolic and cardiovascular diseases, yet the genetic contributions to variability in subclass traits are not fully understood. We conducted single-variant and gene-based association tests between 15.1M variants from genome-wide and exome array and imputed genotypes and 72 lipid and lipoprotein traits in 8,372 Finns. After accounting for 885 variants at 157 previously identified lipid loci, we identified five novel signals near established loci at HIF3A, ADAMTS3, PLTP, LCAT, and LIPG. Four of the signals were identified with a low-frequency (0.005
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1007079DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5679656PMC
October 2017
-->