Publications by authors named "Chinmayee Goda"

4 Publications

  • Page 1 of 1

Modulating endothelial cells with EGFL7 to diminish aGVHD after allogeneic bone marrow transplantation in mice.

Blood Adv 2021 Oct 15. Epub 2021 Oct 15.

Hopital Maisonneuve-Rosemont, Canada.

Acute graft versus host (aGVHD) is the second cause of death after allogeneic-hematopoietic stem cell transplant (allo-HSCT) underscoring the need for novel therapies. Based on previous work that endothelial cell dysfunction is present in aGVHD and that epidermal growth factor-like domain 7 (EGFL7) plays a significant role in decreasing inflammation by repressing endothelial cell activation and T cell migration, we hypothesized that increasing EGFL7 levels after allo-HSCT will diminish the severity of aGVHD. Here, we show that treatment with recombinant EGFL7 (rEGFL7) in two different murine models of aGVHD decreases aGVHD severity and improves survival in recipient mice after allogeneic transplantation with respect to controls without affecting graft versus leukemia effect. Furthermore, we showed that rEGFL7 treatment results in higher thymocytes, T, B and dendritic cells in recipient mice after allo-HSCT. This study constitutes a proof of concept of the ability of rEGFL7 therapy to reduce GHVD severity and mortality after allo-HSCT.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/bloodadvances.2021005498DOI Listing
October 2021

Targeting BRD4 in acute myeloid leukemia with partial tandem duplication of the gene.

Haematologica 2021 09 1;106(9):2527-2532. Epub 2021 Sep 1.

The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA; Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3324/haematol.2020.271627DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409020PMC
September 2021

Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathway.

PLoS Genet 2020 04 9;16(4):e1008692. Epub 2020 Apr 9.

Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America.

Idiopathic pulmonary fibrosis (IPF) is a chronic disease with high mortality and is refractory to treatment. Pulmonary macrophages can both promote and repress fibrosis, however molecular mechanisms regulating macrophage functions during fibrosis remain poorly understood. FOXM1 is a transcription factor and is not expressed in quiescent lungs. Herein, we show that FOXM1 is highly expressed in pulmonary macrophages within fibrotic lungs of IPF patients and mouse fibrotic lungs. Macrophage-specific deletion of Foxm1 in mice (myFoxm1-/-) exacerbated pulmonary fibrosis. Inactivation of FOXM1 in vivo and in vitro increased p38 MAPK signaling in macrophages and decreased DUSP1, a negative regulator of p38 MAPK pathway. FOXM1 directly activated Dusp1 promoter. Overexpression of DUSP1 in FOXM1-deficient macrophages prevented activation of p38 MAPK pathway. Adoptive transfer of wild-type monocytes to myFoxm1-/- mice alleviated bleomycin-induced fibrosis. Altogether, contrary to known pro-fibrotic activities in lung epithelium and fibroblasts, FOXM1 has anti-fibrotic function in macrophages by regulating p38 MAPK.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1008692DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7173935PMC
April 2020

FOXF1 maintains endothelial barrier function and prevents edema after lung injury.

Sci Signal 2016 Apr 19;9(424):ra40. Epub 2016 Apr 19.

Division of Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA. The Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.

Multiple signaling pathways, structural proteins, and transcription factors are involved in the regulation of endothelial barrier function. The forkhead protein FOXF1 is a key transcriptional regulator of embryonic lung development, and we used a conditional knockout approach to examine the role of FOXF1 in adult lung homeostasis, injury, and repair. Tamoxifen-regulated deletion of both Foxf1 alleles in endothelial cells of adult mice (Pdgfb-iCreER/Foxf1(-/-)) caused lung inflammation and edema, leading to respiratory insufficiency and death. Deletion of a single Foxf1 allele made heterozygous Pdgfb-iCreER/Foxf1(+/-)mice more susceptible to acute lung injury. FOXF1 abundance was decreased in pulmonary endothelial cells of human patients with acute lung injury. Gene expression analysis of pulmonary endothelial cells with homozygous FOXF1 deletion indicated reduced expression of genes critical for maintenance and regulation of adherens junctions. FOXF1 knockdown in vitro and in vivo disrupted adherens junctions, enhanced lung endothelial permeability, and increased the abundance of the mRNA and protein for sphingosine 1-phosphate receptor 1 (S1PR1), a key regulator of endothelial barrier function. Chromatin immunoprecipitation and luciferase reporter assays demonstrated that FOXF1 directly bound to and induced the transcriptional activity of the S1pr1 promoter. Pharmacological administration of S1P to injured Pdgfb-iCreER/Foxf1(+/-)mice restored endothelial barrier function, decreased lung edema, and improved survival. Thus, FOXF1 promotes normal lung homeostasis and repair, in part, by enhancing endothelial barrier function through activation of the S1P/S1PR1 signaling pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scisignal.aad1899DOI Listing
April 2016
-->