Publications by authors named "Chengxiu Fang"

2 Publications

  • Page 1 of 1

Interplay of the ubiquitin proteasome system and the innate immune response is essential for the replication of infectious bronchitis virus.

Arch Virol 2021 Aug 26;166(8):2173-2185. Epub 2021 May 26.

Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, People's Republic of China.

Infectious bronchitis virus (IBV) is the only coronavirus known to infect poultry. The replication and pathogenesis of IBV are poorly understood, mainly because of the unavailability of a robust cell culture system. Here, we report that an active ubiquitin proteasome system (UPS) is necessary for efficient replication of IBV in Vero cells. Synthesis of IBV-specific RNA as well as viral protein is hampered in the presence of chemical inhibitors specific for the UPS. Like other coronaviruses, IBV encodes a papain-like protease (PLpro) that exhibits in vitro deubiquitinase activity in addition to proteolytically processing the replicase polyprotein. Our results show that the IBV PLpro enzyme inhibits the synthesis of interferon beta (IFNβ) in infected chicken embryonic fibroblast (DF-1) cells and that this activity is enhanced in the presence of melanoma differentiation-associated protein 5 (MDA5) and TANK binding kinase 1 (TBK1). IBV PLpro, when overexpressed in DF-1 cells, deubiquitinates MDA5 and TBK1. Both of these proteins, along with other adapter molecules such as MAVS, IKKε, and IRF3, form a signaling cascade for the synthesis of IFNβ. Ubiquitination of MDA5 and TBK1 is essential for their activation, and their deubiquitination by IBV PLpro renders them unable to participate in antiviral signaling. This study shows for the first time that there is cross-talk between the UPS and the innate immune response during IBV infection and that the deubiquitinase activity of IBV PLpro is involved in its activity as an IFN antagonist. This insight will be useful for designing better antivirals targeting the catalytic activity of the IBV PLpro enzyme.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00705-021-05073-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8150628PMC
August 2021

Heat Shock Protein Member 8 Is an Attachment Factor for Infectious Bronchitis Virus.

Front Microbiol 2020 10;11:1630. Epub 2020 Jul 10.

Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China.

Although infectious bronchitis virus (IBV) is the first coronavirus identified, little is known about which membrane protein of host cells could interact with IBV spike protein and facilitate the infection by the virus. In this study, by using a monoclonal antibody to the S1 protein of IBV M41 strain, we found that heat shock protein member 8 (HSPA8) could interact with spike protein of IBV. HSPA8 was found to be present on the cell membrane and chicken tissues, with highest expression level in the kidney. Results of co-IP and GST-pull-down assays indicated that the receptor binding domain (RBD) of IBV M41 could interact with HSPA8. The results of binding blocking assay and infection inhibition assay showed that recombinant protein HSPA8 and antibody to HSPA8 could inhibit IBV M41 infection of chicken embryonic kidney (CEK) cells. Further, we found that HSPA8 interacted with the N-terminal 19-272 amino acids of S1 of IBV Beaudette, H120 and QX strains and HSPA8 from human and pig also interacted with IBV M41-RBD. Finally the results of binding blocking assay and infection inhibition assay showed that recombinant HSPA8 protein and antibody to HSPA8 could inhibit IBV Beaudette strain infection of Vero cells that were treated with heparanase to remove heparan sulfate from the cell surface. Taken together, our results indicate that HSPA8 is a novel host factor involved in IBV infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fmicb.2020.01630DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7381282PMC
July 2020
-->