Publications by authors named "Chaodan Luo"

7 Publications

  • Page 1 of 1

Oxyberberine, an absorbed metabolite of berberine, possess superior hypoglycemic effect via regulating the PI3K/Akt and Nrf2 signaling pathways.

Biomed Pharmacother 2021 May 30;137:111312. Epub 2021 Jan 30.

School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China. Electronic address:

Berberine (BBR) is a promising anti-diabetic isoquinoline alkaloid from Rhizoma coptidis, while its bioavailability was extremely low. Here, the existing form and pharmacokinetics of BBR were comparatively characterized in conventional and antibiotic-induced pseudo germ-free (PGF) rats. Furthermore, we comparatively investigated the antidiabetic effect and potential mechanism of BBR and its intestinal oxidative metabolite oxyberberine (OBB) in STZ-induced diabetic rats. Results showed that BBR and OBB existed mainly as protein-bound form in blood, while protein-bound OBB was significantly depleted in PGF rats. Treatment with OBB and BBR effectively decreased clinical symptoms of diabetic rats, reduced blood glucose level, ameliorated the pancreatic damage, and mitigated oxidative stress and inflammatory markers. However, the anti-diabetes effect of BBR was obviously compromised by antibiotics. In addition, OBB exerted superior anti-diabetes effect to BBR of the same dose, significantly up-regulated the mRNA expression of Nrf2 signaling pathway and substantially promoted the pancreatic levels of PI3K/Akt signaling pathway. In conclusion, BBR and its absorbed oxidative metabolite OBB were mainly presented and transported in the protein-bound form in vivo. The gut microbiota may play an important role in the anti-diabetes effect of BBR through transforming itself into the superior hypoglycemic metabolite OBB. OBB possessed favorable hypoglycemic and pancreatic β-cells protective effects, which may stand a huge potential to be further developed into a promising anti-diabetes candidate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2021.111312DOI Listing
May 2021

Coptisine ameliorates DSS-induced ulcerative colitis via improving intestinal barrier dysfunction and suppressing inflammatory response.

Eur J Pharmacol 2021 Apr 27;896:173912. Epub 2021 Jan 27.

Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China. Electronic address:

Ulcerative colitis (UC), as an autoimmune disease, has been troubling human health for many years. Up to now, the available treatments remain unsatisfactory. Rhizoma Coptidis has been widely applied to treat gastrointestinal diseases in China for a long time, and coptisine (COP) is identified as one of its major active components. This study aimed to evaluate the bioactivity of COP on dextran sulfate sodium (DSS)-induced mice colitis and clarify the potential mechanism of action. The results revealed that COP treatment markedly alleviated DSS-induced clinical symptoms by relieving body weight loss and the disease activity index (DAI) score. Specifically, the colon length in the COP (50 and 100 mg/kg) groups were obviously longer than that in the DSS group (7.21 ± 0.34, 8.59 ± 0.45 cm vs. 6.71 ± 0.59 cm, P < 0.01). HE staining analysis revealed that COP treatment significantly protected the integrity of intestinal barrier and alleviated inflammatory cells infiltration. Western blot assay confirmed that COP notably improved the intestinal epithelial barrier function by enhancing the expressions of colonic tight junction proteins and inhibited the expressions of apoptosis-related proteins. In addition, COP treatment remarkably suppressed the levels of colonic myeloperoxidase (MPO), adhesion molecules and pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6 and IL-17), while enhanced IL-10 and TGF-β. The mechanism anti-inflammatory of COP might be related to inhibiting the phosphorylation of IκBα, and the translocation of NF-κB p65 from cytoplasm to nucleus. In summary, the study indicated that COP ameliorated DSS-induced colitis, at least partly through maintaining the integrity of intestinal epithelial barrier, inhibiting apoptosis and inflammatory response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2021.173912DOI Listing
April 2021

Evaluation of antifatigue and antioxidant activities of the marine microalgae in mice.

Food Sci Biotechnol 2020 Apr 27;29(4):549-557. Epub 2019 Nov 27.

3Marine Biomedical Research Institute, the Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, 524023 People's Republic of China.

The present work aimed to estimate the possible anti-fatigue effect and potential mechanism of (IG) in mice. The anti-fatigue activity of IG (100, 200, and 400 mg/kg) was elucidated by a weight-loaded forced swimming test, and the potential mechanism was explored by determination of fatigue-related biochemical parameters. The results showed that pretreatment with IG significantly extended the exhaustive swimming time and increased the levels of liver glycogen, muscle glycogen and blood glucose in a dose-dependent manner. Besides, the increased levels of alanine aminotransferase, aspartate aminotransferase, blood lactic acid, lactic dehydrogenase, creatine kinase, and blood urea nitrogen by exhausted swimming, were dramatically attenuated by pretreatment with IG. Furthermore, supplementation with IG significantly enhanced the glutathione peroxidase and superoxide dismutase levels, while attenuated the level of malonaldehyde. Taken together, IG possessed appreciable efficacy to alleviate fatigue, and the mechanism might be associated with favorably modulating the process of energy consumption, metabolism, and attenuating oxidative stress injury.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10068-019-00694-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142183PMC
April 2020

Oxyberberine, a novel gut microbiota-mediated metabolite of berberine, possesses superior anti-colitis effect: Impact on intestinal epithelial barrier, gut microbiota profile and TLR4-MyD88-NF-κB pathway.

Pharmacol Res 2020 02 19;152:104603. Epub 2019 Dec 19.

Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China. Electronic address:

Berberine (BBR), a naturally-occurring isoquinoline alkaloid isolated from several Chinese herbal medicines, has been widely used for the treatment of dysentery and colitis. However, its blood concentration was less than 1 %, and intestinal microflora-mediated metabolites of BBR were considered to be the important material basis for the bioactivities of BBR. Here, we investigated the anti-colitis activity and potential mechanism of oxyberberine (OBB), a novel gut microbiota metabolite of BBR, in DSS-induced colitis mice. Balb/C mice treated with 3 % DSS in drinking water to induce acute colitis were orally administrated with OBB once daily for 8 days. Clinical symptoms were analyzed, and biological samples were collected for microscopic, immune-inflammation, intestinal barrier function, and gut microbiota analysis. Results showed that OBB significantly attenuated DSS-induced clinical manifestations, colon shortening and histological injury in the mice with colitis, which achieved similar therapeutic effect to azathioprine (AZA) and was superior to BBR. Furthermore, OBB remarkably ameliorated colonic inflammatory response and intestinal epithelial barrier dysfunction. OBB appreciably inhibited TLR4-MyD88-NF-κB signaling pathway through down-regulating the protein expressions of TLR4 and MyD88, inhibiting the phosphorylation of IκBα, and the translocation of NF-κB p65 from cytoplasm to nucleus. Moreover, OBB markedly modulated the gut dysbiosis induced by DSS and restored the dysbacteria to normal level. Taken together, the result for the first time revealed that OBB effectively improved DSS-induced experimental colitis, at least partly through maintaining the colonic integrity, inhibiting inflammation response, and modulating gut microflora profile.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2019.104603DOI Listing
February 2020

Dihydroberberine, a hydrogenated derivative of berberine firstly identified in Phellodendri Chinese Cortex, exerts anti-inflammatory effect via dual modulation of NF-κB and MAPK signaling pathways.

Int Immunopharmacol 2019 Oct 8;75:105802. Epub 2019 Aug 8.

Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan 523808, PR China. Electronic address:

Dihydroberberine (DHB), a hydrogenated derivative of berberine (BBR), has been firstly identified in Phellodendri Chinese Cortex (PC) by HPLC-ESI-MS/MS. Nowadays most researches on PC focus on its main components like BBR, however, the role of its naturally-occurring derivatives remains poorly defined heretofore. The present work aimed to comparatively evaluate the in vivo anti-inflammatory properties and mechanisms of DHB and BBR in three typical inflammatory murine models. The results showed that DHB effectively mitigated acetic acid-induced vascular permeability, xylene-elicited ear edema and carrageenan-caused paw edema. Meanwhile, DHB markedly attenuated the inflammatory cell infiltration in pathological sections of ears and paws. DHB was also observed to significantly decrease the production and mRNA expression levels of IL-6, IL-1β, TNF-α, NO (iNOS) and PGE2 (COX-2), increase the release of IL-10, and inhibit the activation of NF-κB and MAPK signaling pathways. The anti-inflammatory effect of DHB was weaker than that of BBR. The results might further contribute to unraveling the pharmacodynamic basis of PC and support its ethnomedical use in the treatment of inflammatory diseases. DHB possesses good potential to be further developed into a promising anti-inflammatory alternative, and can serve as a lead template for novel anti-inflammatory candidate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2019.105802DOI Listing
October 2019

Coptisine-induced inhibition of Helicobacter pylori: elucidation of specific mechanisms by probing urease active site and its maturation process.

J Enzyme Inhib Med Chem 2018 Dec;33(1):1362-1375

f Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome , The Second Affiliated Hospital, Guangzhou University of Chinese Medicine , Guangzhou , P. R. China.

In this study, we examined the anti-Helicobactor pylori effects of the main protoberberine-type alkaloids in Rhizoma Coptidis. Coptisine exerted varying antibacterial and bactericidal effects against three standard H. pylori strains and eleven clinical isolates, including four drug-resistant strains, with minimum inhibitory concentrations ranging from 25 to 50 μg/mL and minimal bactericidal concentrations ranging from 37.5 to 125 μg/mL. Coptisine's anti-H. pylori effects derived from specific inhibition of urease in vivo. In vitro, coptisine inactivated urease in a concentration-dependent manner through slow-binding inhibition and involved binding to the urease active site sulfhydryl group. Coptisine inhibition of H. pylori urease (HPU) was mixed type, while inhibition of jack bean urease was non-competitive. Importantly, coptisine also inhibited HPU by binding to its nickel metallocentre. Besides, coptisine interfered with urease maturation by inhibiting activity of prototypical urease accessory protein UreG and formation of UreG dimers and by promoting dissociation of nickel from UreG dimers. These findings demonstrate that coptisine inhibits urease activity by targeting its active site and inhibiting its maturation, thereby effectively inhibiting H. pylori. Coptisine may thus be an effective anti-H. pylori agent.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/14756366.2018.1501044DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136390PMC
December 2018

Protective effect of coptisine free base on indomethacin-induced gastric ulcers in rats: Characterization of potential molecular mechanisms.

Life Sci 2018 Jan 6;193:47-56. Epub 2017 Dec 6.

The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China. Electronic address:

Aims: The aim of this study was to comparatively investigate the potential gastroprotective effect and underlying mechanisms of coptisine free base (CFB, 8-hydroxy-7, 8-dihydrocoptisine), berberine and lansoprazole against indomethacin-induced gastric ulcer in rats.

Materials And Methods: CFB (10, 20 and 40mg/kg), berberine (20mg/kg) and lansoprazole (30mg/kg) were orally administrated to rats prior to indometacin ingestion, and gastric lesions were evaluated macroscopically and histologically, and further analyzed by ELISA, qRT-PCR and Western blot.

Key Findings: CFB exerted comparable or superior gastroprotective effect to berberine in protecting against indomethacin-induced gastric injury. CFB pretreatment significantly enhanced the levels of superoxide dismutase (SOD) and glutathione (GSH), and markedly decreased the malonaldehyde (MDA) content. CFB administration effectively suppressed the levels of myeloperoxidase (MPO), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and angiotensin II (Ang II). Besides, CFB substantially up-regulated the mRNA expressions of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), and promoted gastric mucosal prostaglandin E level (PGE). Furthermore, CFB pretreatment remarkably increased the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) from cytosol into the nucleus, and the expression of heme oxygenase-1 (HO-1), while significantly decreased the expression of mitogen activated protein Kinase Kinase 6 (MKK6) and translocation of p38 mitogen-activated protein kinase (p38 MAPK).

Significance: This was the first investigation reporting the anti-ulcer effect of protoberberine alkaloid free base on in vivo rodent model. The gastroprotective mechanism of CFB might involve favorable regulation of antioxidant and anti-inflammatory status mediated, at least partially, by the Nrf2 signaling pathway and p38 MAPK translocation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2017.12.004DOI Listing
January 2018
-->