Publications by authors named "Chao-An Cheng"

6 Publications

  • Page 1 of 1

The effect of vacuum packaging on histamine changes of milkfish sticks at various storage temperatures.

J Food Drug Anal 2017 Oct 14;25(4):812-818. Epub 2017 Feb 14.

Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, 811, Taiwan, ROC. Electronic address:

The effects of polyethylene packaging (PEP) (in air) and vacuum packaging (VP) on the histamine related quality of milkfish sticks stored at different temperatures (-20°C, 4°C, 15°C, and 25°C) were studied. The results showed that the aerobic plate count (APC), pH, total volatile basic nitrogen (TVBN), and histamine contents increased as storage time increased when the PEP and VP samples were stored at 25°C. At below 15°C, the APC, TVBN, pH, and histamine levels in PEP and VP samples were retarded, but the VP samples had considerably lower levels of APC, TVBN, and histamine than PEP samples. Once the frozen fish samples stored at -20°C for 2 months were thawed and stored at 25°C, VP retarded the increase of histamine in milkfish sticks as compared to PEP. In summary, this result suggested the milkfish sticks packed with VP and stored below 4°C could prevent deterioration of product quality and extend shelf-life.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jfda.2016.12.009DOI Listing
October 2017

Recognition of Linear B-Cell Epitope of Betanodavirus Coat Protein by RG-M18 Neutralizing mAB Inhibits Giant Grouper Nervous Necrosis Virus (GGNNV) Infection.

PLoS One 2015 4;10(5):e0126121. Epub 2015 May 4.

Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan; Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan.

Betanodavirus is a causative agent of viral nervous necrosis syndrome in many important aquaculture marine fish larvae, resulting in high global mortality. The coat protein of Betanodavirus is the sole structural protein, and it can assemble the virion particle by itself. In this study, we used a high-titer neutralizing mAB, RG-M18, to identify the linear B-cell epitope on the viral coat protein. By mapping a series of recombinant proteins generated using the E. coli PET expression system, we demonstrated that the linear epitope recognized by RG-M18 is located at the C-terminus of the coat protein, between amino acid residues 195 and 338. To define the minimal epitope region, a set of overlapping peptides were synthesized and evaluated for RG-M18 binding. Such analysis identified the 195VNVSVLCR202 motif as the minimal epitope. Comparative analysis of Alanine scanning mutagenesis with dot-blotting and ELISA revealed that Valine197, Valine199, and Cysteine201 are critical for antibody binding. Substitution of Leucine200 in the RGNNV, BFNNV, and TPNNV genotypes with Methionine200 (thereby simulating the SJNNV genotype) did not affect binding affinity, implying that RG-M18 can recognize all genotypes of Betanodaviruses. In competition experiments, synthetic multiple antigen peptides of this epitope dramatically suppressed giant grouper nervous necrosis virus (GGNNV) propagation in grouper brain cells. The data provide new insights into the protective mechanism of this neutralizing mAB, with broader implications for Betanodavirus vaccinology and antiviral peptide drug development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126121PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4418827PMC
April 2016

Molecular characterization and expression analysis of four isotypes of immunoglobulin light chain genes in orange-spotted grouper, Epinephelus coioides.

Dev Comp Immunol 2013 Mar 24;39(3):169-79. Epub 2012 Nov 24.

Laboratory of Molecular Genetics, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, ROC.

To date, many immunoglobulin (Ig) genes have been identified in diverse teleost species, but the contributions of different types of light chain (IgL) to the immune response remain unclear. Screening of a stimulated kidney cDNA library from orange-spotted grouper (Osg, Epinephelus coioides) resulted in the identification of 26 full Ig light chain (OsgIgL) coding sequences. These 26 OsgIgLs encoded peptides from 235 to 248 amino acid residues and could be grouped into five variable (V(L)) and four constant (C(L)) isotypes. The C(L) regions contained three conserved cysteine residues that may participate in intra- or inter-chain disulfide bond formation. The four C(L) isotypes could be sub-grouped into two serological types: κ (C(L)-I, C(L)-II and C(L)-III) and σ (C(L)-IV), by phylogenetic analysis. The OsgIgL genes were found to be expressed in various tissues, with greatest levels of expression observed in the head-kidney and spleen. The major expression type was C(L)-I, which comprised 92% and 91% of total OsgIgL gene expression in the head-kidney and spleen, respectively. Transcription of all four C(L) isotypes was differentially affected in response to various immunostimulators, including lipopolysaccharide (LPS), poly I:C and grouper iridovirus (GIV). Induction of OsgIgL genes in response to immunostimulators was particularly dramatic in the spleen, suggesting this organ holds particular importance for the regulation of OsgIgL expression. Furthermore, vaccination of grouper with formalin-inactivated GIV also induced differential patterns of expression in all four OsgIgL isotypes. In summary, the significant and diverse patterns of transcriptional induction observed for OsgIgL isotypes in the spleen and head-kidney imply that each isotype may have unique roles in the immune response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2012.11.003DOI Listing
March 2013

Characterization of serum immunoglobulin M of grouper and cDNA cloning of its heavy chain.

Vet Immunol Immunopathol 2006 Feb 30;109(3-4):255-65. Epub 2005 Sep 30.

Department of Food Science, National Kinmen Institute of Technology, Kinmen, Taiwan.

Immunoglobulin M (IgM) from the whole serum of grouper fish, Epinephelus coioides was purified by affinity chromatography using protein A-Sepharose column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions revealed that the relative molecular masses (Mr) of the equimolar heavy and light chains of IgM were 78,000 and 27,000, respectively. The cDNAs encoding IgM heavy chain comprising its variable (VH) and constant (CH) regions have been cloned and sequenced from a grouper kidney cDNA library by antibody screening method. Five VH (130-142 amino acids) and four CH (450-454 amino acids) families were identified. The variable and constant regions were conserved with their putative domains. All the four constant region domains (CH1-CH2-CH3-CH4) contained each three conserved cysteine residues, which are considered to form the inter- and intra-chain disulfide bridges. There were three carbohydrate acceptor sites in the constant region. In general, the pattern of IgM gene organization seems to resemble that of other teleosts. Moreover, the CH genes in grouper IgM occur as multifamily as reported in Atlantic salmon and common carp.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetimm.2005.08.029DOI Listing
February 2006

Identification of tetrodotoxin in a marine gastropod (Nassarius glans) responsible for human morbidity and mortality in Taiwan.

J Food Prot 2005 Aug;68(8):1696-701

Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan.

The toxicity of the gastropod Nassarius glans was investigated. This gastropod was implicated in an incident of food paralytic poisoning on Tungsa Island, Taiwan, in April 2004. Six victims consumed both digestive glands and muscle. These tissues contained high concentrations of toxin; their highest toxicity scores were 2,048 and 2,992 MU/g, respectively, based on the tetrodotoxin (TTX) bioassay. The toxin was purified from these gastropods and analyzed by high-performance liquid chromatography, which revealed TTX and related compounds 4-epi TTX and anhydro-TTX; paralytic shellfish poisons were not found. The urine and blood samples from patients were cleansed using a C18 Sep-Pak cartridge column and 3,000 molecular weight cutoff Ultrafree microcentrifuge filters, and the eluate was filtered and analyzed by liquid chromatography and mass spectrometry. The detection limit for TTX was 1 ng/ml. The standard curves were linear in the range 30 to 600 ng/ml for urine and 1 to 30 ng/ml for blood. TTX was detected in all urine samples but in only three of four blood samples tested. Thus, the causative agent of gastropod food poisoning was identified as TTX.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4315/0362-028x-68.8.1696DOI Listing
August 2005

Identification of tetrodotoxin and fish species in a dried dressed fish fillet implicated in food poisoning.

J Food Prot 2002 Feb;65(2):389-92

Department of Food Science, National Taiwan Ocean University, Keelung, Republic of China.

There were five victims of neurotoxic food poisoning from a dried dressed fish fillet in Changhua County, Taiwan, in February 2000. The toxicity of the dried dressed fish fillets was 243 mouse units per g according to a tetrodotoxin bioassay. The partially purified toxin was identified as tetrodotoxin and anhydrotetrodotoxin. The sequence of the 376-nucleotide region in the cytochrome b gene of the mitochondrial DNA exhibited the same genotype as that of the toxic puffer fish Lagocephalus lunaris. The same single restriction site for Hinfl was found in the polymerase chain reaction (PCR) products from the dried dressed fish fillet and the muscle of L. lunaris, yielding two DNA fragments of 170 and 206 bp. However, no restriction site for Hinfl was found in the PCR products from other toxic puffer fishes, including Takifugu niphobles, Takifugu oblongus, and Takifugu rubripes. Therefore, the species of the dried dressed fish fillet was identified as L. lunaris and its causative agent was identified as tetrodotoxin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4315/0362-028x-65.2.389DOI Listing
February 2002