Publications by authors named "Changyu Fang"

1 Publications

  • Page 1 of 1

Polybrominated diphenyl ethers quinone-induced intracellular protein oxidative damage triggers ubiquitin-proteasome and autophagy-lysosomal system activation in LO2 cells.

Chemosphere 2021 Feb 23;275:130034. Epub 2021 Feb 23.

Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. Electronic address:

Polybrominated diphenyl ethers (PBDEs), a kind of flame retardants, were widely used in the furniture, textile and electronics industries. Because of their lipophilic, persistent and bio-accumulative properties, PBDEs were listed on the Stockholm Convention as typical persistent organic pollutants (POPs). We have previously reported that a highly active, quinone-type metabolite of PBDEs (PBDEQ) causes DNA damage and subsequently triggers apoptosis. However, it is remaining unclear whether PBDEQ provokes protein damage and stimulates corresponding signaling cascade. Using human normal liver (LO2) cells as an in vitro model, we demonstrated that PBDEQ causes oxidative protein damage through excess reactive oxygen species (ROS). Consistently, we found PBDEQ exposure causes the depletion of protein thiol group, the appearance of carbonyl group and the accumulation of protein aggregates. Endoplasmic reticulum (ER) stress was involved in the repair of oxidized proteins. Under the scenario of severe damage, LO2 cells degrade oxidized proteins through ubiquitin-proteasome system (UPS) and autophagy. The blockage of these protein degradation pathways aggravates PBDEQ-induced cytotoxicity in LO2 cells, whilst antioxidant N-acetyl-cysteine (NAC) rescues PBDEQ-induced oxidative protein damage conversely. In summary, our current study first demonstrated PBDEQ-induced protein oxidative damage in LO2 cells, which offer a better understanding of the cytotoxicity of PBDEs and corresponding metabolites.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.130034DOI Listing
February 2021