Publications by authors named "Chalat Santivarangkna"

6 Publications

  • Page 1 of 1

Valorization of fish byproducts: Sources to end-product applications of bioactive protein hydrolysate.

Compr Rev Food Sci Food Saf 2022 03 12;21(2):1803-1842. Epub 2022 Feb 12.

Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates.

Fish processing industries result in an ample number of protein-rich byproducts, which have been used to produce protein hydrolysate (PH) for human consumption. Chemical, microbial, and enzymatic hydrolysis processes have been implemented for the production of fish PH (FPH) from diverse types of fish processing byproducts. FPH has been reported to possess bioactive active peptides known to exhibit various biological activities such as antioxidant, antimicrobial, angiotensin-I converting enzyme inhibition, calcium-binding ability, dipeptidyl peptidase-IV inhibition, immunomodulation, and antiproliferative activity, which are discussed comprehensively in this review. Appropriate conditions for the hydrolysis process (e.g., type and concentration of enzymes, time, and temperature) play an important role in achieving the desired level of hydrolysis, thus affecting the functional and bioactive properties and stability of FPH. This review provides an in-depth and comprehensive discussion on the sources, process parameters, purification as well as functional and bioactive properties of FPHs. The most recent research findings on the impact of production parameters, bitterness of peptide, storage, and food processing conditions on functional properties and stability of FPH were also reported. More importantly, the recent studies on biological activities of FPH and in vivo health benefits were discussed with the possible mechanism of action. Furthermore, FPH-polyphenol conjugate, encapsulation, and digestive stability of FPH were discussed in terms of their potential to be utilized as a nutraceutical ingredient. Last but not the least, various industrial applications of FPH and the fate of FPH in terms of limitations, hurdles, future research directions, and challenges have been addressed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/1541-4337.12917DOI Listing
March 2022

Intake of GG (LGG) fermented milk before drinking alcohol reduces acetaldehyde levels and duration of flushing in drinkers with wild-type and heterozygous mutant : a randomized, blinded crossover controlled trial.

Food Funct 2021 Oct 19;12(20):10147-10159. Epub 2021 Oct 19.

Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand.

Alcohol consumption leads to acetaldehyde accumulation, especially in people with mutant aldehyde dehydrogenase 2 gene (). Novel strategies to promote acetaldehyde detoxification are required to prevent alcohol-related toxicity. Probiotic bacteria such as GG (LGG) were shown to have capacity to detoxify acetaldehyde. This randomized, blinded, placebo-controlled cross-over trial investigated the effect of LGG fermented milk in people with polymorphisms after moderate alcohol intake. Ten healthy wild-type and ten heterozygous mutant Thai men were block randomized into two groups. Each group consumed a different sequence of 150 mL fermented milk containing 10 CFU mL LGG and lactic-acidified milk (placebo), followed by five glasses of beer (0.4 g ethanol per kg body weight), with a one-week wash-out. Consuming LGG fermented milk before alcohol reduced areas under the response curves of blood and salivary acetaldehyde in wild-type and heterozygous mutant individuals ( < 0.05 and < 0.01, respectively). Interestingly, participants with mutant responded better than wild-type participants for salivary acetaldehyde (90% 70%, < 0.001). Their durations of flushing were reduced when consuming LGG milk. Regardless of status, 10 CFU mL LGG was retained in saliva at least 3.5 h after milk consumption. In conclusion, intake of LGG fermented milk before drinking alcohol reduces blood and salivary acetaldehyde levels and duration of flushing in drinkers with wild-type and heterozygous mutant . The addition of exogenous capacity to detoxify acetaldehyde using the probiotic product could be a potential strategy to promote the alleviation of exposure to reactive and carcinogenic acetaldehyde associated with alcohol drinking in individuals with defective ALDH2 enzyme.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1fo01485dDOI Listing
October 2021

Fish protein hydrolysates as a health-promoting ingredient-recent update.

Nutr Rev 2022 Apr;80(5):1013-1026

Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates.

Dietary habits and lifestyle-related diseases indicate that food has a direct impact on individual health. Hence, a diet containing essential nutrients is important for healthy living. Fish and fish products are important in diets worldwide because of their nutritional value, especially their easily digestible proteins with essential amino acids. Similarly, fish protein hydrolysate (FPH) obtained from fish muscle and by-products has been reported to exhibit various biological activities and to have functional properties, which make FPH a suitable nutraceutical candidate. This review focuses on the health-promoting ability of FPH in terms of skin health, bone and cartilage health, blood lipid profile, and body-weight management studied in rats and human model systems. The absorption and bioavailability of FPH in humans is discussed, and challenges and obstacles of FPH as a functional food ingredient are outlined.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/nutrit/nuab065DOI Listing
April 2022

The Effect of Steaming and Fermentation on Nutritive Values, Antioxidant Activities, and Inhibitory Properties of Tea Leaves.

Foods 2021 Jan 8;10(1). Epub 2021 Jan 8.

Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand.

Fermented tea (Cha-miang in Thai) is a local product made by traditional food preservation processes in Northern Thailand that involve steaming fresh tea leaves followed by fermenting in the dark. Information on changes in nutritive values, bioactive compounds, antioxidant activities, and health properties that occur during the steaming and fermenting processes of tea leaves is, however, limited. Changes in nutritive values, phenolics, antioxidant activities, and in vitro health properties through inhibition of key enzymes that control obesity (lipase), diabetes (α-amylase and α-glucosidase), hypertension (angiotensin-converting enzyme (ACE)), and Alzheimer's disease (cholinesterases (ChEs) and β-secretase (BACE-1)) of fermented tea were compared to the corresponding fresh and steamed tea leaves. Results showed that energy, carbohydrate, and vitamin B1 increased after steaming, while most nutrients including protein, dietary fiber, vitamins (B2, B3, and C), and minerals (Na, K, Ca, Mg, Fe, and Zn) decreased after the steaming process. After fermentation, energy, fat, sodium, potassium, and iron contents increased, while calcium and vitamins (B1, B2, B3, and C) decreased compared to steamed tea leaves. However, the contents of vitamin B1 and iron were insignificantly different between fresh and fermented tea leaves. Five flavonoids (quercetin, kaempferol, cyanidin, myricetin, and apigenin) and three phenolic acids (gallic acid, caffeic acid, and -coumaric acid) were identified in the tea samples. Total phenolic content (TPC) and antioxidant activities increased significantly after steaming and fermentation, suggesting structural changes in bioactive compounds during these processes. Steamed tea exhibited high inhibition against lipase, α-amylase, and α-glucosidase, while fermented tea possessed high anti-ChE and anti-ACE activities. Fresh tea exhibited high BACE-1 inhibitory activity. Results suggest that tea preparations (steaming and fermentation) play a significant role in the amounts of nutrients and bioactive compounds, which, in turn, affect the in vitro health properties. Knowledge gained from this research will support future investigations on in vivo health properties of fermented tea, as well as promote future food development of fermented tea as a healthy food.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/foods10010117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827290PMC
January 2021

Role of glassy state on stabilities of freeze-dried probiotics.

J Food Sci 2011 Oct 19;76(8):R152-6. Epub 2011 Sep 19.

Chair for Food Process Engineering and Dairy Technology, Centre of Life and Food Sciences, Technische Univ. München, 85354-Freising, Germany.

High viability of dried probiotics is of great importance for immediate recovery of activity in fermented foods and for health-promoting effects of nutraceuticals. The conventional process for the production of dried probiotics is freeze-drying. However, loss of viability occurs during the drying and storage of the dried powder. It is believed that achieving the "glassy state" is necessary for survival, and the glassy state should be retained during freezing, drying, and storage of cells. Insight into the role of glassy state has been largely adopted from studies conducted with proteins and foods. However, studies on the role of glassy state particularly with probiotic cells are on the increase, and both common and explicit findings have been reported. Current understanding of the role of the glassy state on viability of probiotics is not only valuable for the production of fermented foods and nutraceuticals but also for the development of nonfermented functional foods that use the dried powder as an adjunct. Therefore, the aim of this review is to bring together recent findings on the role of glassy state on survival of probiotics during each step of production and storage. The prevailing state of knowledge and recent finding are discussed. The major gaps of knowledge have been identified and the perspective of ongoing and future research is addressed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1750-3841.2011.02347.xDOI Listing
October 2011

Alternative drying processes for the industrial preservation of lactic acid starter cultures.

Biotechnol Prog 2007 Mar-Apr;23(2):302-15. Epub 2007 Feb 17.

Food Process Engineering and Dairy Technology, Technische Universität München, 85354-Freising, Germany.

The preservation of lactic acid starter cultures by alternative drying processes has attracted increasing attention due to the high costs and energy consumption of freezing and freeze drying. This review thus aims to provide a survey regarding the state of knowledge of starter culture production at high levels of viability. The results from numerous studies on various drying processes and lactic acid bacteria are summarized. The alternative drying processes considered, such as spray drying, fluidized bed drying, and vacuum drying, are mainly of industrial interest. The features, advantages, and disadvantages of these drying processes are described. In conclusion, the important factors that need to be considered, standardized, or optimized to achieve high levels of viability include intrinsic tolerance of cultures, growth media and conditions, stress induction, cell harvesting conditions, protective agents, rehydration conditions, enumeration of cells, and storage conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bp060268fDOI Listing
May 2007
-->