Publications by authors named "Ceyhun E Kirimli"

7 Publications

  • Page 1 of 1

Rapid, label-free genetic detection of enteropathogens in stool without genetic isolation or amplification.

Biosens Bioelectron 2019 Apr 21;130:73-80. Epub 2019 Jan 21.

School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA. Electronic address:

Current genetic detection methods require gene isolation, gene amplification and detection with a fluorescent-tagged probe. They typically require sophisticated equipment and expensive fluorescent probes, rendering them not widely available for rapid acute infection diagnoses at the point of care to ensure timely treatment of the diseases. Here we report a rapid genetic detection method that can detect the bacterial gene directly from patient stools using a piezoelectric plate sensor (PEPS) in conjunction with a continuous flow system with two temperature zones. With stools spiked with sodium dodecyl sulfate (SDS) in situ bacteria lysing and DNA denaturation occurred in the high-temperature zone whereas in situ specific detection of the denatured DNA by the PEPS occurred in the lower-temperature zone. The outcome was a rapid genetic detection method that directly detected bacterial genes from stool in < 40 min without the need of gene isolation, gene amplification, or expensive fluorescent tag but with polymerase chain reaction (PCR) sensitivity. In 40 blinded patient stools, it detected the toxin B gene of Clostridium difficile with 95% sensitivity and 95% specificity. The all-electrical, label-free nature of the detection further supports its potential as a low-cost genetic test that can be used at the point of care.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2019.01.025DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6469511PMC
April 2019

Piezoelectric Plate Sensor (PEPS) for Analysis of Specific KRAS Point Mutations at Low Copy Number in Urine Without DNA Isolation or Amplification.

Methods Mol Biol 2017 ;1572:327-348

School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, 10104, USA.

We have examined in situ detection of single-nucleotide KRAS mutations in urine using a (Pb(MgNb)O)(PbTiO) (PMN-PT) piezoelectric plate sensor (PEPS) coated with a 17-nucleotide (nt) locked nucleic acid (LNA) probe DNA complementary to the KRAS mutation without DNA isolation and amplification. In situ mutant (MT) DNA in urine in a wild type (WT) background was carried out at a flow rate of 4 mL/min and at 63 °C with the PEPS vertically situated at the center of the flow. Both the temperature and the impingement flow force discriminated the wild type. Under these conditions PEPS was shown to specifically detect KRAS MT in situ within 30 min with an analytical sensitivity of 60 copies/mL in a clinically relevant background of WT with concentrations 1000-fold greater than that of MT without DNA isolation, amplification, or labeling. For validation, detection was performed in a mixture of blue MT fluorescent reporter microspheres (FRMs) (MT FRMs) that bound to only the captured MT, and orange WT FRMs that bound to only the captured WT. The captured blue MT FRMs still outnumbered the orange WT FRMs by a factor of 4-1 even though WT was 1000-fold of MT in urine, illustrating the specificity of the point mutation detection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6911-1_22DOI Listing
February 2018

Amplification-free in situ KRAS point mutation detection at 60 copies per mL in urine in a background of 1000-fold wild type.

Analyst 2016 Feb;141(4):1421-33

Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania 19104, USA.

We have examined the in situ detection of a single-nucleotide KRAS mutation in urine using a (Pb(Mg1/3Nb2/3)O3)0.65(PbTiO3)0.35 (PMN-PT) piezoelectric plate sensor (PEPS) coated with a 17-nucleotide (nt) locked nucleic acid (LNA) probe DNA complementary to the KRAS mutation. To enhance the in situ mutant (MT) DNA detection specificity against the wild type (WT), detection was carried out in a flow with a flow rate of 4 mL min(-1) and at 63 °C with the PEPS vertically situated at the center of the flow in which both the temperature and the flow impingement force discriminated the wild type. Under such conditions, PEPS was shown to specifically detect KRAS MT in situ with 60 copies per mL analytical sensitivity in a background of clinically-relevant 1000-fold more WT in 30 min without DNA isolation, amplification, or labeling. For validation, this detection was followed with detection in a mixture of blue MT fluorescent reporter microspheres (FRMs) (MT FRMs) that bound to only the captured MT and orange WT FRMs that bound to only the captured WT. Microscopic examinations showed that the captured blue MT FRMs still outnumbered the orange WT FRMs by a factor of 4 to 1 even though WT was 1000-fold of MT in urine. Finally, multiplexed specific mutation detection was demonstrated using a 6-PEPS array each with a probe DNA targeting one of the 6 codon-12 KRAS mutations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5an02048dDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4747796PMC
February 2016

Specific in situ hepatitis B viral double mutation (HBVDM) detection in urine with 60 copies ml(-1) analytical sensitivity in a background of 250-fold wild type without DNA isolation and amplification.

Analyst 2015 Mar 19;140(5):1590-8. Epub 2015 Jan 19.

Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania, USA.

We have examined in situ detection of hepatitis B virus 1762T/1764A double mutation (HBVDM) in urine using a (Pb(Mg(1/3)Nb(2/3))O3)(0.65)(PbTiO3)(0.35) (PMN-PT) piezoelectric plate sensor (PEPS) coated with a 16-nucleotide (nt) probe DNA (pDNA) complementary to the HBVDM. The in situ mutation (MT) detection was carried out in a flow with the PEPS vertically situated at the center of the flow in a background of wild type (WT). For validation, this detection was followed by detection in the mixture of MT fluorescent reporter microspheres (FRMs) (MT FRMs) and WT FRMs that emitted different fluorescence colours and were designed to specifically bind to MT and WT, respectively. At 30 °C and 4 ml min(-1), a PEPS was shown to specifically detect HBVDM in situ with 60 copies ml(-1) analytical sensitivity in a background of clinically-relevant 250-fold more WT in 30 min without DNA isolation, amplification, or labelling as validated by the visualization of the captured MT FRMs and WT FRMs following FRM detection where the captured MT FRMs outnumbered the WT FRMs by a factor of 5 to 1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4an01885kDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542474PMC
March 2015

DNA hybridization detection with 100 zM sensitivity using piezoelectric plate sensors with an improved noise-reduction algorithm.

Analyst 2014 Jun;139(11):2754-63

Lakehead University, Department of Chemistry, Thunder Bay, Canada.

We have examined real-time, in situ hybridization detection of target DNA (tDNA) in a buffer solution and in urine using 8 μm-thick lead magnesium niobate-lead titanate (PMN-PT) piezoelectric plate sensors (PEPSs) about 1.1-1.2 mm long and 0.45 mm wide with improved 3-mercaptopropyltrimethoxysilane (MPS) insulation and a new multiple-parabola (>50) resonance peak position fitting algorithm. With probe DNA (pDNA) immobilized on the PEPS surface and by monitoring the first width extension mode (WEM) resonance frequency shift we detected tDNA in real time at concentration as low as 1 × 10(-19) M in urine (100 zM) with a signal to noise ratio (SNR) of 13 without DNA isolation and amplification at room temperature in 30 min. The present multiple-parabola fitting algorithm increased the detection of SNR by about 10 times compared to those obtained using the raw data and by about 5 times compared to those obtained using single parabola fitting. The detection was validated by in situ follow-up detection and subsequent visualization of fluorescent reporter microspheres (FRMs) coated with reporter DNA complementary to the tDNA but different from the probe pDNA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4an00215fDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4971884PMC
June 2014

Temperature- and flow-enhanced detection specificity of mutated DNA against the wild type with reporter microspheres.

Analyst 2013 Oct;138(20):6117-26

Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania, USA.

Detection of mutated (MT) deoxyribonucleic acid (DNA) amongst the wild type (WT) requires the probe DNA (pDNA) that is complementary to the MT to discriminate the WT by one or two nucleotide mismatches. Traditionally this is achieved by raising the temperature to above the melting temperature (Tm) of the WT (TWT) but below that of the MT (TMT). However, a raised temperature is also accompanied by a weakened binding of the MT to the pDNA which can reduce the detection sensitivity. In this study, we investigated flow as a way to enhance MT detection specificity at a lower temperature. Gold-coated glass (GCG) slides immobilized with pDNA complementary to the target MT were placed at the center of the flow cell. The detection was done by flowing MT or WT at various concentrations followed by flowing 10(5) ml(-1) fluorescent reporter microspheres (FRMs) that were 6 μm in size and coated with reporter DNA complementary to the MT or WT but different from the pDNA at various flow rates and temperatures. The detection of MT or WT was characterized by counting the FRMs captured on the GCG. Hepatitis B virus 1762/1764 double mutation (HBV DM) was the model MT and the TMT and TWT were 47 °C and 22 °C, respectively. It was shown that at room temperature, flow initially increased the binding of both the MT and WT at lower flow rates but decreased the binding at flow rates ≥4 ml min(-1) due to the increase in the flow-induced impingement force on the FRMs to overcome the binding of the MT and the WT to the GCG at higher flow rates. At ≥30 °C the decrease in binding of the WT with an increasing flow rate was more than that of the MT because 30 °C was above the TWT but still well below the TMT. As a result, the detection of MT at 30 °C with a flow rate of 4 ml min(-1) was more specific than at 35 °C without flow. These results indicate that flow can diminish WT binding at a lower temperature than without flow and allow MT detection to occur at a lower temperature with high specificity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3an00384aDOI Listing
October 2013

Real-time, in situ DNA hybridization detection with attomolar sensitivity without amplification using (pb(Mg1/3Nb2/3)O3)0.65-(PbTiO3)0.35 piezoelectric plate sensors.

Biosens Bioelectron 2013 May 31;43:391-9. Epub 2012 Dec 31.

Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA.

In this paper we have investigated real-time, in situ DNA hybridization detection using piezoelectric plate sensors (PEPSs) consisting of a highly piezoelectric lead magnesium niobate-lead titanate (PMN-PT) layer 8μm in thickness thinly coated with Cr/Au electrodes and electrically insulated with 3-mercaptopropyltrimethoxysilane (MPS) encapsulation. With probe complementary DNA (cDNA) immobilized on the PEPS surface and by monitoring the first longitudinal extension mode (LEM) resonance frequency shift of the PEPS we detected hybridization of the target DNA (tDNA) to the probe cDNA on the PEPS surface in real time at concentration 1.6×10(-18)M with a signal to noise ratio of 8 without isolation and amplification at room temperature in 30min in phosphate buffered saline (PBS) solution. The detection was validated in situ by two different methods: (1) the detection of fluorescently labeled microspheres coated with reporter cDNA complementary to the tDNA but different from the probe cDNA; (2) fluorescent visualization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2012.12.044DOI Listing
May 2013