Publications by authors named "Celestine Vubangsi Gemuh"

2 Publications

  • Page 1 of 1

Renewable sorbent dispersive solid phase extraction automated by Lab-In-Syringe using magnetite-functionalized hydrophilic-lipophilic balanced sorbent coupled online to HPLC for determination of surface water contaminants.

Anal Chim Acta 2022 Jun 26;1210:339874. Epub 2022 Apr 26.

Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec Králové, 500 05, Czech Republic. Electronic address:

An automated methodology for magnetic dispersive solid phase microextraction integrating bead injection approach for renewable sorbent introduction is presented for the first time and was successfully applied to the enrichment of water contaminants. For this purpose, a simple procedure was developed for the functionalization of commercial SupelTM-Select HLB (Hydrophilic modified styrene polymer) sorbent beads that allowed embedding magnetite nanoparticles (FeO). The sorbent was then used in a dispersive solid phase extraction procedure that was carried out entirely inside the void of an automatic syringe pump following the flow-batch concept of Lab-In-Syringe including automated renewal of the sorbent for each analysis. Mixing processes, sorbent dispersion, and sorbent recovery were enabled by using a strong magnetic stirring bar, fabricated from a 3D printed polypropylene casing and neodymium magnets, inside the syringe. The final extract was submitted to online coupled liquid chromatography with spectrometric detection. System and methodology were applied to determine mebendazole, bisphenol A, benzyl 4-hydroxybenzoate, diclofenac, and triclosan selected as models from different groups of environmental contaminants of current concern. Experimental parameters including extraction and elution times, composition and volume of eluent, and bead recollection were optimized. Required system elements were produced by 3D printing. Enlarging the sample volume by repeated extraction to enhance the sensitivity of the method was studied. Using double extraction from 3.5 mL, limits of detection ranged from 1.2 μg L to 6.5 μg L with an RSD (n = 6) value less than 7% for all the analytes at 25 μg L level. The method was linear in the range of 5-200 μg L and was successfully implemented for the analysis of surface waters with analyte recoveries ranging from 78.4% to 105.6%.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2022.339874DOI Listing
June 2022

Lab-In-Syringe with Bead Injection Coupled Online to High-Performance Liquid Chromatography as Versatile Tool for Determination of Nonsteroidal Anti-Inflammatory Drugs in Surface Waters.

Molecules 2021 Sep 3;26(17). Epub 2021 Sep 3.

Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.

We report on the hyphenation of the modern flow techniques Lab-In-Syringe and Lab-On-Valve for automated sample preparation coupled online with high-performance liquid chromatography. Adopting the bead injection concept on the Lab-On-Valve platform, the on-demand, renewable, solid-phase extraction of five nonsteroidal anti-inflammatory drugs, namely ketoprofen, naproxen, flurbiprofen, diclofenac, and ibuprofen, was carried out as a proof-of-concept. In-syringe mixing of the sample with buffer and standards allowed straightforward pre-load sample modification for the preconcentration of large sample volumes. Packing of ca. 4.4 mg microSPE columns from Oasis HLB sorbent slurry was performed for each sample analysis using a simple microcolumn adapted to the Lab-On-Valve manifold to achieve low backpressure during loading. Eluted analytes were injected into online coupled HPLC with subsequent separation on a Symmetry C18 column in isocratic mode. The optimized method was highly reproducible, with RSD values of 3.2% to 7.6% on 20 µg L level. Linearity was confirmed up to 200 µg L and LOD values were between 0.06 and 1.98 µg L. Recovery factors between 91 and 109% were obtained in the analysis of spiked surface water samples.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules26175358DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433787PMC
September 2021
-->