Publications by authors named "Cedar H A Boakye"

11 Publications

  • Page 1 of 1

Lipid-based oral delivery systems for skin deposition of a potential chemopreventive DIM derivative: characterization and evaluation.

Drug Deliv Transl Res 2016 10;6(5):526-39

College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1520 S Martin Luther King Jr. Blvd, Tallahassee, FL, 32307, USA.

The objective of this study was to explore the oral route as a viable potential for the skin deposition of a novel diindolylmethane derivative (DIM-D) for chemoprevention activity. Various lipid-based oral delivery systems were optimized and compared for enhancing DIM-D's oral bioavailability and skin deposition. Preformulation studies were performed to evaluate the log P and solubility of DIM-D. Microsomal metabolism, P-glycoprotein efflux, and caco-2 monolayer permeability of DIM-D were determined. Comparative evaluation of the oral absorption and skin deposition of DIM-D-loaded various lipid-based formulations was performed in rats. DIM-D showed pH-dependent solubility and a high log P value. It was not a strong substrate of microsomal degradation and P-glycoprotein. SMEDDs comprised of medium chain triglycerides, monoglycerides, and kolliphor-HS15 (36.70 ± 0.42 nm). SNEDDs comprised of long chain triglycerides, cremophor RH40, labrasol, and TPGS (84.00 ± 14.14 nm). Nanostructured lipid carriers (NLC) consisted of compritol, miglyol, and surfactants (116.50 ± 2.12 nm). The blank formulations all showed >70 % cell viability in caco-2 cells. Differential Scanning Calorimetry confirmed the amorphization of DIM-D within the lipid matrices while Atomic Force Microscopy showed particle size distribution similar to the dynamic light scattering data. DIM-D also showed reduced permeation across caco-2 monolayer that was enhanced (p < 0.05) by SNEDDs in comparison to SMEDDs and NLC. Fabsolute for DIM-D SNEDDs, SMEDDs, and NLC was 0.14, 0.04, and 0.007, respectively. SNEDDs caused 53.90, 11.32, and 15.08-fold more skin deposition of DIM-D than the free drug, SMEDDs, and NLC, respectively, at 2 h following oral administration and shows a viable potential for use in skin cancer chemoprevention. Graphical Abstract ᅟ.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13346-016-0302-2DOI Listing
October 2016

Novel amphiphilic lipid augments the co-delivery of erlotinib and IL36 siRNA into the skin for psoriasis treatment.

J Control Release 2017 01 8;246:120-132. Epub 2016 May 8.

College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA. Electronic address:

In this study, we demonstrate for the first time the concurrent transdermal delivery of erlotinib and IL36α siRNA as a potential dual therapy for psoriasis. The objectives were to develop and evaluate lipid nanocarriers (CYnLIP) using a novel pyrrolidinium lipid to disrupt the skin barrier for enhanced transdermal delivery. CYnLIP (132.00±6.23nm) had encapsulation efficiency of 49.04±2.54% for erlotinib. DSC confirmed encapsulation of erlotinib within CYnLIP. Atomic Force Microscopy demonstrated notable topographical changes in the stratum corneum of skin permeated with CYnLIP that were absent in skin hydrated with water. Peak force distance curves also exhibited a more permeable membrane for CYnLIP-incubated skin than hydrated skin. Permeation studies showed enhanced (p<0.01) skin retention of erlotinib by CYnLIP (40.76-fold) than solution and more pronounced fluorescence at deeper layers of the skin for fluorescein-labeled siRNA-CYnLIP than solution. The enhanced co-transdermal delivery of erlotinib and IL36α siRNA by CYnLIP efficaciously treated psoriatic-like plaques in C57BL/6 mice (PASI score of 1) compared to imiquimod-only treatment (PASI score of 4). IHC and western blotting revealed reduction in epidermal hyperplasia (Ki67) and in the dermal infiltration of inflammatory cytokines (IL36α, pSTAT3, TNFα, NFκB, IL23 and IL17) for erlotinib/IL36α siRNA-CYnLIP (p<0.05) comparable to Tacrolimus but markedly less than imiquimod-only treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2016.05.017DOI Listing
January 2017

Ultra-flexible nanocarriers for enhanced topical delivery of a highly lipophilic antioxidative molecule for skin cancer chemoprevention.

Colloids Surf B Biointerfaces 2016 Jul 15;143:156-167. Epub 2016 Mar 15.

College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA. Electronic address:

Purpose: In this study, we developed cationic ultra-flexible nanocarriers (UltraFLEX-Nano) to surmount the skin barrier structure and to potentiate the topical delivery of a highly lipophilic antioxidative diindolylmethane derivative (DIM-D) for the inhibition of UV-induced DNA damage and skin carcinogenesis.

Methods: UltraFLEX-Nano was prepared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-3-trimethylammonium-propane, cholesterol and tween-80 by ethanolic injection method; was characterized by Differential Scanning Calorimetric (DSC), Fourier Transform Infrared (FT-IR) and Atomic Force Microscopic (phase-imaging) analyses and permeation studies were performed in dermatomed human skin. The efficacy of DIM-D-UltraFLEX-Nano for skin cancer chemoprevention was evaluated in UVB-induced skin cancer model in vivo.

Results: DIM-D-UltraFLEX-Nano formed a stable mono-dispersion (110.50±0.71nm) with >90% encapsulation of DIM-D that was supported by HPLC, DSC, FT-IR and AFM phase imaging. The blank formulation was non-toxic to human embryonic kidney cells. UltraFLEX-Nano was vastly deformable and highly permeable across the stratum corneum; there was significant (p<0.01) skin deposition of DIM-D for UltraFLEX-Nano that was superior to PEG solution (13.83-fold). DIM-D-UltraFLEX-Nano pretreatment delayed the onset of UVB-induced tumorigenesis (2 weeks) and reduced (p<0.05) the number of tumors observed in SKH-1 mice (3.33-fold), which was comparable to pretreatment with sunscreen (SPF30). Also, DIM-D-UltraFLEX-Nano caused decrease (p<0.05) in UV-induced DNA damage (8-hydroxydeoxyguanosine), skin inflammation (PCNA), epidermal hyperplasia (c-myc, CyclinD1), immunosuppression (IL10), cell survival (AKT), metastasis (Vimentin, MMP-9, TIMP1) but increase in apoptosis (p53 and p21).

Conclusion: UltraFLEX-Nano was efficient in enhancing the topical delivery of DIM-D. DIM-D-UltraFLEX-Nano was efficacious in delaying skin tumor incidence and multiplicity in SKH mice comparable to sunscreen (SPF30).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2016.03.036DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5371508PMC
July 2016

Percutaneous delivery of α-melanocyte-stimulating hormone for the treatment of imiquimod-induced psoriasis.

J Drug Target 2016 18;24(6):537-47. Epub 2015 Nov 18.

a College of Pharmacy and Pharmaceutical Sciences , Florida A&M University , Tallahassee , FL , USA .

Purpose: α-Melanocyte-stimulating hormone (α-MSH) is an endogenous peptide hormone with anti-inflammatory responses. We developed topical formulation(s) of α-MSH to reduce psoriasis-related inflammation.

Methods: Transcutol (TC) and n-methyl 2-pyrrolidone (NMP) were used to formulate a gel for α-MSH. Skin permeation and dermal microdialysis of the solution and optimized gel were performed. The inflammatory response of α-MSH gel was investigated in imiquimod-induced psoriasis mouse model. Histology and immunohistochemistry were then performed on treated skin.

Results: Solution comprising 50%w/w TC and 10%w/w NMP showed higher (p < 0.05) skin retention (0.27 ± 0.024 µg of α-MSH/mg of skin) than solutions containing either 50% w/w TC or 10% w/w NMP at 24 h. Dispersion of α-MSH in Carbopol Ultrez 10 produced a uniform dispersion. α-MSH gel showed pseudoplastic flow with thixotropic behavior. Dermal microdialysis results suggested that skin permeation of gel after 5 h was 1.9-folds higher than the solution. Further, gel-treated psoriatic-like plaque skin sections showed significant (p < 0.05) decrease in the expression of a melanocortin receptor, in the psoriasis area and severity index score and transepidermal water loss compared to the solution.

Conclusion: TC, NMP and Carbopol Ultrez 10 form a stable gel with improved skin permeation of α-MSH for a reduction in psoriasis-associated inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3109/1061186X.2015.1103743DOI Listing
January 2017

Piperlongumine for Enhancing Oral Bioavailability and Cytotoxicity of Docetaxel in Triple-Negative Breast Cancer.

J Pharm Sci 2015 Dec 15;104(12):4417-4426. Epub 2015 Sep 15.

College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307. Electronic address:

Very low oral bioavailability due to extensive pre-systemic metabolism and P-gp efflux has constrained the oral metronomic chemotherapy of docetaxel (DTX). There is tremendous need of compounds facilitating oral delivery of DTX. The research was aimed to investigate the effect of piperlongumine (PPL) on human liver microsomal metabolism, Caco-2 permeability, and cytotoxicity of DTX in triple-negative breast cancer cell lines. Reduction in testosterone and DTX metabolism (twofold increase in half-life) by PPL was comparable to the standard CYP3A4 inhibitor, cyclosporine A. P-gp efflux ratio of DTX across caco-2 monolayer was reduced from 2.37 to 1.52 on co-incubation with PPL. The IC50 value of DTX was reduced three to five times and combination index values in all the cell lines were below 0.6. PPL at non-cytotoxic concentration showed significant enhancement of the antimigration effect of DTX. Expression of tumor markers such as survivin, bcl2, C-myc, and cyclin D1 were downregulated to a great extent with enhanced p53 expression when treated with combination instead of individual drug. Co-treatment with PPL led to 1.68-fold enhancement in DTX bioavailability in SD rats. PPL could be a potential candidate in overcoming the obstacles associated with oral DTX delivery with synergistic anticancer activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.24637DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706797PMC
December 2015

Enhanced Percutaneous Delivery of 1,1-bis(3'-indolyl)-1-(p-chlorophenyl) Methane for Skin Cancer Chemoprevention.

J Biomed Nanotechnol 2015 Jul;11(7):1269-81

Skin cancer has high incidence in the United States and is mainly caused by ultraviolet B (UVB) radiation. In this study, we demonstrated the role of 1,1-bis(3'-indolyl)-1-(p-chlorophenyl) methane (DIM-D) in the prevention of skin photocarcinogenesis using an in vivo UVB-induced skin cancer model. We also evaluated the efficiency of oleic acid-modified nanostructured lipid carriers to deliver DIM-D across the skin barrier into the epidermis for chemopreventive activity. Nanocarriers were 203.00 ± 21.21 nm in diameter with polydispersity, zeta potential and entrapment efficiency of 0.33 ± 0.01, 37.17 ± 0.90 mV and 93.64 ± 0.65%, respectively. Oleic acid-modified nanocarriers were incorporated into Hydroxypropyl methylcellulose to form DIM-D-Nanogel (DIM-D-N). DIM-D-N pretreatment prior to UVB exposure delayed tumor initiation and reduced tumor multiplicity (p < 0.05) at the end of the study compared to Epigallocatechin gallate (EGCG) gel pretreatment. DIM-D-N pretreatment decreased UVB-induced damage to skin lipids and proteins (p < 0.05), respectively by 7.63 and 2.56-fold less than EGCG gel pretreatment and by 17.86 and 11.92-fold less than UVB-only treatment. Histology showed rete-ridge extension, epidermal thickening and hyperkeratosis for UVB-only treatment and EGCG gel pretreatment; DIM-D-N pretreatment showed similar features as the negative control. Western blot analysis showed increased Nurr1 expression (p < 0.05) for DIM-D-N pretreated group compared to EGCG gel (4.68-fold). DIM-D-N pretreatment reduced BCI-2 expression (p < 0.05) but increased Bax and cPARP. Knock down studies with Nurr1 siRNA reduced the expressions of Nurr1 and cPARP by 8.18 and 1.45-fold, respectively (p < 0.05). Our results suggest the role of DIM-D in skin cancer chemoprevention mediated by possible molecular therapeutic targets such as Nurr1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2015.2064DOI Listing
July 2015

Doxorubicin liposomes as an investigative model to study the skin permeation of nanocarriers.

Int J Pharm 2015 Jul 21;489(1-2):106-16. Epub 2015 Apr 21.

College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA. Electronic address:

The objectives of this study were to develop an innovative investigative model using doxorubicin as a fluorophore to evaluate the skin permeation of nanocarriers and the impact of size and surface characteristics on their permeability. Different doxorubicin-loaded liposomes with mean particle size <130 nm and different surface chemistry were prepared by ammonium acetate gradient method using DPPC, DOPE, Cholesterol, DSPE-PEG 2000 and 1,1-Di-((Z)-octadec-9-en-1-yl) pyrrolidin-1-ium chloride (CY5)/DOTAP/1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) as the charge modifier. There was minimal release of doxorubicin from the liposomes up to 8h; indicating that fluorescence observed within the skin layers was due to the intact liposomes. Liposomes with particle sizes >600 nm were restricted within the stratum corneum. DOTAP (p<0.01) and CY5 (p<0.05) liposomes demonstrated significant permeation into the skin than DOPA and PEG liposomes. Tape stripping significantly (p<0.01) enhanced the skin permeation of doxorubicin liposomes but TAT-decorated doxorubicin liposomes permeated better (p<0.005). Blockage of the hair follicles resulted in significant reduction in the extent and intensity of fluorescence observed within the skin layers. Overall, doxorubicin liposomes proved to be an ideal fluorophore-based model. The hair follicles were the major route utilized by the liposomes to permeate skin. Surface charge and particle size played vital roles in the extent of permeation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2015.04.059DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4478089PMC
July 2015

Nanomiemgel--a novel drug delivery system for topical application--in vitro and in vivo evaluation.

PLoS One 2014 29;9(12):e115952. Epub 2014 Dec 29.

College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States of America.

Aim: The objective of this study was to formulate and evaluate a unique matrix mixture (nanomiemgel) of nanomicelle and nanoemulsion containing aceclofenac and capsaicin using in vitro and in vivo analyses and to compare it to a marketed formulation (Aceproxyvon).

Methods: Nanomicelles were prepared using Vitamin E TPGS by solvent evaporation method and nanoemulsion was prepared by high-pressure homogenization method. In vitro drug release and human skin permeation studies were performed and analyzed using HPLC. The efficiency of nanomiemgel as a delivery system was investigated using an imiquimod-induced psoriatic like plaque model developed in C57BL/6 mice.

Results: Atomic Force Microscopy images of the samples exhibited a globular morphology with an average diameter of 200, 250 and 220 nm for NMI, NEM and NMG, respectively. Nanomiemgel demonstrated a controlled release drug pattern and induced 2.02 and 1.97-fold more permeation of aceclofenac and capsaicin, respectively than Aceproxyvon through dermatomed human skin. Nanomiemgel also showed 2.94 and 2.09-fold greater Cmax of aceclofenac and capsaicin, respectively than Aceproxyvon in skin microdialysis study in rats. The PASI score, ear thickness and spleen weight of the imiquimod-induced psoriatic-like plaque model were significantly (p<0.05) reduced in NMG treated mice compared to free drug, NEM, NMI & Aceproxyvon.

Conclusion: Using a new combination of two different drug delivery systems (NEM+NMI), the absorption of the combined system (NMG) was found to be better than either of the individual drug delivery systems due to the utilization of the maximum possible paths of absorption available for that particular drug.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115952PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4278799PMC
September 2015

Topical administration of dual siRNAs using fusogenic lipid nanoparticles for treating psoriatic-like plaques.

Nanomedicine (Lond) 2014 Jul 5;9(14):2157-74. Epub 2014 Mar 5.

College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA.

Aim: Psoriasis is a chronic autoimmune skin disorder with substantial negative impact on the patient's quality of life. The present study was carried out to demonstrate the efficiency of a novel topical delivery system in the transport of two siRNAs for the treatment of psoriatic-like plaques.

Materials & Methods: We designed and developed a novel fusogenic nucleic acid lipid particle (F-NALP) system containing two therapeutic nucleic acids, anti-STAT3 siRNA (siSTAT3) and anti-TNF-α siRNA (siTNF-α). Novel cationic amphiphilic lipid with oleyl chains was synthesized and used in the nanocarrier system. Therapeutic efficacies of F-NALPs were assessed using an imiquimod-induced psoriatic-like plaque model.

Results: Hydrodynamic size and surface potential of F-NALPs were 102 ± 6 nm and 32.14 ± 6.21 mV, respectively. F-NALPs delivered fluorescein isothiocyanate-siRNA to a skin depth of 360 µm. F-NALPs carrying siSTAT3 and siTNF-α significantly (p < 0.05) reduced expression of STAT3 and TNF-α mRNAs and IL-23 and Ki-67 proteins compared with solution, and was superior in comparison with Topgraf(®) (GlaxoSmithKline Pharmaceuticals Limited, Maharashtra, India).

Conclusion: Our observations demonstrate that F-NALPs can efficiently carry siSTAT3 and siTNF-α into the dermis and combination of the two nucleic acids can synergistically treat psoriatic-like plaques.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2217/nnm.13.202DOI Listing
July 2014

Design, synthesis of novel lipids as chemical permeation enhancers and development of nanoparticle system for transdermal drug delivery.

PLoS One 2013 12;8(12):e82581. Epub 2013 Dec 12.

College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, United States of America.

In the present study, we designed and developed novel lipids that include (Z)-1-(Octadec-9-en-1-yl)-pyrrolidine (Cy5T), 1, 1-Di-((Z)-octadec-9-en-1-yl)pyrrolidin-1-ium iodide (Cy5), (Z)-1-(Octadec-9-en-1-yl)-piperidine (Cy6T), and 1, 1-Di-((Z)-octadec-9-en-1-yl) piperidin-1-ium iodide (Cy6) to enhance the transdermal permeation of some selected drugs. Firstly, we evaluated the transdermal permeation efficacies of these lipids as chemical permeation enhancers in vehicle formulations for melatonin, ß-estradiol, caffeine, α-MSH, and spantide using franz diffusion cells. Among them Cy5 lipid was determined to be the most efficient by increasing the transdermal permeation of melatonin, ß-estradiol, caffeine, α-MSH, and spantide by 1.5 to 3.26-fold more at the epidermal layer and 1.3 to 2.5-fold more at the dermal layer, in comparison to either NMP or OA. Hence we developed a nanoparticle system (cy5 lipid ethanol drug nanoparticles) to evaluate any further improvement in the drug penetration. Cy5 lipid formed uniformly sized nanoparticles ranging from 150-200 nm depending on the type of drug. Further, Cy5 based nanoparticle system significantly (p<0.05) increased the permeation of all the drugs in comparison to the lipid solution and standard permeation enhancers. There were about 1.54 to 22-fold more of drug retained in the dermis for the Cy5 based nanoparticles compared to OA/NMP standard enhancers and 3.87 to 66.67-fold more than lipid solution. In addition, epifluorescent microscopic analysis in rhodamine-PE permeation studies confirmed the superior permeation enhancement of LEDs (detection of fluorescence up to skin depth of 340 μm) more than lipid solution, which revealed fluorescence up to skin depth of only 260 μm. In summary the present findings demonstrate that i) cationic lipid with 5 membered amine heterocyclic ring has higher permeating efficacy than the 6 membered amine hertocyclic ring. ii) The nanoparticle system prepared with Cy5 showed significant (p<0.05) increase in the permeation of the drugs than the control penetration enhancers, oleic acid and NMP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082581PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861410PMC
October 2014

Chemoprevention of skin cancer with 1,1-Bis (3'-indolyl)-1-(aromatic) methane analog through induction of the orphan nuclear receptor, NR4A2 (Nurr1).

PLoS One 2013 7;8(8):e69519. Epub 2013 Aug 7.

College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, United States of America.

Background: The objective of this study was to demonstrate the anti-skin cancer and chemopreventive potential of 1,1-bis(3'-indolyl)-1-(p-chlorophenyl methane) (DIM-D) using an in vitro model.

Methods: In vitro cell cytotoxicity and viability assays were carried out in A431 human epidermoid carcinoma cell line and normal human epidermal keratinocytes (NHEK) respectively by crystal violet staining. Apoptosis induction in A431 cells (DIM-D treated) and NHEK cells pretreated with DIM-D (2 hr) prior to UVB irradiation, were assessed. The accumulation of reactive oxygen species (ROS) in DIM-D pretreated NHEK cells (2 hr) prior to UVB exposure was also determined. Immunocytochemistry and western blot analysis was performed to determine cleaved caspase 3 and DNA damage markers in DIM-D treated A431 cells and in DIM-D pretreated NHEK cells prior to UVB irradiation.

Results: The IC50 values of DIM-D were 68.7 ± 7.3, 48.3 ± 10.1 and 11.5 ± 3.1 μM whilst for Epigallocatechin gallate (EGCG) were 419.1 ± 8.3, 186.1 ± 5.2 and 56.7 ± 3.1 μM for 24, 48 and 72 hr treatments respectively. DIM-D exhibited a significantly (p<0.05) greater induction of DNA fragmentation in A431 cells compared to EGCG with percent cell death of 38.9. In addition, DIM-D induced higher expression in A431 cells compared to EGCG of cleaved caspase 3 (3.0-fold vs. 2.4-fold changes), Nurr1 (2.7-fold vs. 1.7-fold changes) and NFκB (1.3-fold vs. 1.1-fold changes). DIM-D also exhibited chemopreventive activity in UVB-irradiated NHEK cells by significantly (p<0.05) reducing UVB-induced ROS formation and apoptosis compared to EGCG. Additionally, DIM-D induced expression of Nurr1 but reduced expression of 8-OHdG significantly in UVB-irradiated NHEK cells compared to EGCG and UV only.

Conclusion: Our results suggest that DIM-D exhibits Nurr1-dependent transactivation in the induction of apoptosis in A431 cells and it protects NHEK cells against UVB-induced ROS formation and DNA damage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069519PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737220PMC
August 2014
-->