Publications by authors named "Cecelia A Laurie"

26 Publications

  • Page 1 of 1

Variant-specific inflation factors for assessing population stratification at the phenotypic variance level.

Nat Commun 2021 06 9;12(1):3506. Epub 2021 Jun 9.

Department of Biostatistics, University of Washington, Seattle, WA, USA.

In modern Whole Genome Sequencing (WGS) epidemiological studies, participant-level data from multiple studies are often pooled and results are obtained from a single analysis. We consider the impact of differential phenotype variances by study, which we term 'variance stratification'. Unaccounted for, variance stratification can lead to both decreased statistical power, and increased false positives rates, depending on how allele frequencies, sample sizes, and phenotypic variances vary across the studies that are pooled. We develop a procedure to compute variant-specific inflation factors, and show how it can be used for diagnosis of genetic association analyses on pooled individual level data from multiple studies. We describe a WGS-appropriate analysis approach, implemented in freely-available software, which allows study-specific variances and thereby improves performance in practice. We illustrate the variance stratification problem, its solutions, and the proposed diagnostic procedure, in simulations and in data from the Trans-Omics for Precision Medicine Whole Genome Sequencing Program (TOPMed), used in association tests for hemoglobin concentrations and BMI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-23655-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190158PMC
June 2021

Whole-genome sequencing association analysis of quantitative red blood cell phenotypes: The NHLBI TOPMed program.

Am J Hum Genet 2021 05 21;108(5):874-893. Epub 2021 Apr 21.

Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.

Whole-genome sequencing (WGS), a powerful tool for detecting novel coding and non-coding disease-causing variants, has largely been applied to clinical diagnosis of inherited disorders. Here we leveraged WGS data in up to 62,653 ethnically diverse participants from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and assessed statistical association of variants with seven red blood cell (RBC) quantitative traits. We discovered 14 single variant-RBC trait associations at 12 genomic loci, which have not been reported previously. Several of the RBC trait-variant associations (RPN1, ELL2, MIDN, HBB, HBA1, PIEZO1, and G6PD) were replicated in independent GWAS datasets imputed to the TOPMed reference panel. Most of these discovered variants are rare/low frequency, and several are observed disproportionately among non-European Ancestry (African, Hispanic/Latino, or East Asian) populations. We identified a 3 bp indel p.Lys2169del (g.88717175_88717177TCT[4]) (common only in the Ashkenazi Jewish population) of PIEZO1, a gene responsible for the Mendelian red cell disorder hereditary xerocytosis (MIM: 194380), associated with higher mean corpuscular hemoglobin concentration (MCHC). In stepwise conditional analysis and in gene-based rare variant aggregated association analysis, we identified several of the variants in HBB, HBA1, TMPRSS6, and G6PD that represent the carrier state for known coding, promoter, or splice site loss-of-function variants that cause inherited RBC disorders. Finally, we applied base and nuclease editing to demonstrate that the sentinel variant rs112097551 (nearest gene RPN1) acts through a cis-regulatory element that exerts long-range control of the gene RUVBL1 which is essential for hematopoiesis. Together, these results demonstrate the utility of WGS in ethnically diverse population-based samples and gene editing for expanding knowledge of the genetic architecture of quantitative hematologic traits and suggest a continuum between complex trait and Mendelian red cell disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.04.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206199PMC
May 2021

A System for Phenotype Harmonization in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program.

Am J Epidemiol 2021 Apr 16. Epub 2021 Apr 16.

Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington.

Genotype-phenotype association studies often combine phenotype data from multiple studies to increase power. Harmonization of the data usually requires substantial effort due to heterogeneity in phenotype definitions, study design, data collection procedures, and data set organization. Here we describe a centralized system for phenotype harmonization that includes input from phenotype domain and study experts, quality control, documentation, reproducible results, and data sharing mechanisms. This system was developed for the National Heart, Lung and Blood Institute's Trans-Omics for Precision Medicine program, which is generating genomic and other omics data for >80 studies with extensive phenotype data. To date, 63 phenotypes have been harmonized across thousands of participants from up to 17 studies per phenotype (participants recruited 1948-2012). We discuss challenges in this undertaking and how they were addressed. The harmonized phenotype data and associated documentation have been submitted to National Institutes of Health data repositories for controlled-access by the scientific community. We also provide materials to facilitate future harmonization efforts by the community, which include (1) the code used to generate the 63 harmonized phenotypes, enabling others to reproduce, modify or extend these harmonizations to additional studies; and (2) results of labeling thousands of phenotype variables with controlled vocabulary terms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/aje/kwab115DOI Listing
April 2021

Whole genome sequence analysis of pulmonary function and COPD in 19,996 multi-ethnic participants.

Nat Commun 2020 10 14;11(1):5182. Epub 2020 Oct 14.

The Institute for Translational Genomics and Population Sciences, The Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA.

Chronic obstructive pulmonary disease (COPD), diagnosed by reduced lung function, is a leading cause of morbidity and mortality. We performed whole genome sequence (WGS) analysis of lung function and COPD in a multi-ethnic sample of 11,497 participants from population- and family-based studies, and 8499 individuals from COPD-enriched studies in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program. We identify at genome-wide significance 10 known GWAS loci and 22 distinct, previously unreported loci, including two common variant signals from stratified analysis of African Americans. Four novel common variants within the regions of PIAS1, RGN (two variants) and FTO show evidence of replication in the UK Biobank (European ancestry n ~ 320,000), while colocalization analyses leveraging multi-omic data from GTEx and TOPMed identify potential molecular mechanisms underlying four of the 22 novel loci. Our study demonstrates the value of performing WGS analyses and multi-omic follow-up in cohorts of diverse ancestry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-18334-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598941PMC
October 2020

Genetic analyses of diverse populations improves discovery for complex traits.

Nature 2019 06 19;570(7762):514-518. Epub 2019 Jun 19.

Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Genome-wide association studies (GWAS) have laid the foundation for investigations into the biology of complex traits, drug development and clinical guidelines. However, the majority of discovery efforts are based on data from populations of European ancestry. In light of the differential genetic architecture that is known to exist between populations, bias in representation can exacerbate existing disease and healthcare disparities. Critical variants may be missed if they have a low frequency or are completely absent in European populations, especially as the field shifts its attention towards rare variants, which are more likely to be population-specific. Additionally, effect sizes and their derived risk prediction scores derived in one population may not accurately extrapolate to other populations. Here we demonstrate the value of diverse, multi-ethnic participants in large-scale genomic studies. The Population Architecture using Genomics and Epidemiology (PAGE) study conducted a GWAS of 26 clinical and behavioural phenotypes in 49,839 non-European individuals. Using strategies tailored for analysis of multi-ethnic and admixed populations, we describe a framework for analysing diverse populations, identify 27 novel loci and 38 secondary signals at known loci, as well as replicate 1,444 GWAS catalogue associations across these traits. Our data show evidence of effect-size heterogeneity across ancestries for published GWAS associations, substantial benefits for fine-mapping using diverse cohorts and insights into clinical implications. In the United States-where minority populations have a disproportionately higher burden of chronic conditions-the lack of representation of diverse populations in genetic research will result in inequitable access to precision medicine for those with the highest burden of disease. We strongly advocate for continued, large genome-wide efforts in diverse populations to maximize genetic discovery and reduce health disparities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-019-1310-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6785182PMC
June 2019

A fully adjusted two-stage procedure for rank-normalization in genetic association studies.

Genet Epidemiol 2019 04 17;43(3):263-275. Epub 2019 Jan 17.

Department of Biostatistics, University of Washington, Seattle, Washington.

When testing genotype-phenotype associations using linear regression, departure of the trait distribution from normality can impact both Type I error rate control and statistical power, with worse consequences for rarer variants. Because genotypes are expected to have small effects (if any) investigators now routinely use a two-stage method, in which they first regress the trait on covariates, obtain residuals, rank-normalize them, and then use the rank-normalized residuals in association analysis with the genotypes. Potential confounding signals are assumed to be removed at the first stage, so in practice, no further adjustment is done in the second stage. Here, we show that this widely used approach can lead to tests with undesirable statistical properties, due to both combination of a mis-specified mean-variance relationship and remaining covariate associations between the rank-normalized residuals and genotypes. We demonstrate these properties theoretically, and also in applications to genome-wide and whole-genome sequencing association studies. We further propose and evaluate an alternative fully adjusted two-stage approach that adjusts for covariates both when residuals are obtained and in the subsequent association test. This method can reduce excess Type I errors and improve statistical power.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/gepi.22188DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416071PMC
April 2019

Discovery of common and rare genetic risk variants for colorectal cancer.

Nat Genet 2019 01 3;51(1):76-87. Epub 2018 Dec 3.

Department of Epidemiology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany.

To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P < 5 × 10, bringing the number of known independent signals for CRC to ~100. New signals implicate lower-frequency variants, Krüppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs and somatic drivers, and support a role for immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of biology underlying this risk and influence personalized screening strategies and drug development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0286-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358437PMC
January 2019

Genomic analyses in African populations identify novel risk loci for cleft palate.

Hum Mol Genet 2019 03;28(6):1038-1051

Department of Oral and Maxillofacial Surgery, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria.

Orofacial clefts are common developmental disorders that pose significant clinical, economical and psychological problems. We conducted genome-wide association analyses for cleft palate only (CPO) and cleft lip with or without palate (CL/P) with ~17 million markers in sub-Saharan Africans. After replication and combined analyses, we identified novel loci for CPO at or near genome-wide significance on chromosomes 2 (near CTNNA2) and 19 (near SULT2A1). In situ hybridization of Sult2a1 in mice showed expression of SULT2A1 in mesenchymal cells in palate, palatal rugae and palatal epithelium in the fused palate. The previously reported 8q24 was the most significant locus for CL/P in our study, and we replicated several previously reported loci including PAX7 and VAX1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddy402DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6400042PMC
March 2019

Genome-wide association reveals contribution of MRAS to painful temporomandibular disorder in males.

Pain 2019 Mar;160(3):579-591

Center for Pain Research and Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.

Painful temporomandibular disorders (TMDs) are the leading cause of chronic orofacial pain, but its underlying molecular mechanisms remain obscure. Although many environmental factors have been associated with higher risk of developing painful TMD, family and twin studies support a heritable genetic component as well. We performed a genome-wide association study assuming an additive genetic model of TMD in a discovery cohort of 999 cases and 2031 TMD-free controls from the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study. Using logistic models adjusted for sex, age, enrollment site, and race, we identified 3 distinct loci that were significant in combined or sex-segregated analyses. A single-nucleotide polymorphism on chromosome 3 (rs13078961) was significantly associated with TMD in males only (odds ratio = 2.9, 95% confidence interval: 2.02-4.27, P = 2.2 × 10). This association was nominally replicated in a meta-analysis of 7 independent orofacial pain cohorts including 160,194 participants (odds ratio = 1.16, 95% confidence interval: 1.0-1.35, P = 2.3 × 10). Functional analysis in human dorsal root ganglia and blood indicated this variant is an expression quantitative trait locus, with the minor allele associated with decreased expression of the nearby muscle RAS oncogene homolog (MRAS) gene (beta = -0.51, P = 2.43 × 10). Male mice, but not female mice, with a null mutation of Mras displayed persistent mechanical allodynia in a model of inflammatory pain. Genetic and behavioral evidence support a novel mechanism by which genetically determined MRAS expression moderates the resiliency to chronic pain. This effect is male-specific and may contribute to the lower rates of painful TMD in men.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/j.pain.0000000000001438DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377338PMC
March 2019

Identification of paternal uniparental disomy on chromosome 22 and a de novo deletion on chromosome 18 in individuals with orofacial clefts.

Mol Genet Genomic Med 2018 11 23;6(6):924-932. Epub 2018 Aug 23.

Department of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City, Iowa.

Background: Orofacial clefts are the most common malformations of the head and neck region. Genetic and environmental factors have been implicated in the etiology of these traits.

Methods: We recently conducted genotyping of individuals from the African population using the multiethnic genotyping array (MEGA) to identify common genetic variation associated with nonsyndromic orofacial clefts. The data cleaning of this dataset allowed for screening of annotated sex versus genetic sex, confirmation of identify by descent and identification of large chromosomal anomalies.

Results: We identified the first reported orofacial cleft case associated with paternal uniparental disomy (patUPD) on chromosome 22. We also identified a de novo deletion on chromosome 18. In addition to chromosomal anomalies, we identified cases with molecular karyotypes suggesting Klinefelter syndrome, Turner syndrome and Triple X syndrome.

Conclusion: Observations from our study support the need for genetic testing when clinically indicated in order to exclude chromosomal anomalies associated with clefting. The identification of these chromosomal anomalies and sex aneuploidies is important in genetic counseling for families that are at risk. Clinicians should share any identified genetic findings and place them in context for the families during routine clinical visits and evaluations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mgg3.459DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305633PMC
November 2018

Novel Common Genetic Susceptibility Loci for Colorectal Cancer.

J Natl Cancer Inst 2019 02;111(2):146-157

Division of Research, Kaiser Permanente Medical Care Program of Northern California, Oakland, CA.

Background: Previous genome-wide association studies (GWAS) have identified 42 loci (P < 5 × 10-8) associated with risk of colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture unexplained familial risk.

Methods: We conducted a GWAS in European descent CRC cases and control subjects using a discovery-replication design, followed by examination of novel findings in a multiethnic sample (cumulative n = 163 315). In the discovery stage (36 948 case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel independent variants reaching genome-wide statistical significance (two-sided P < 5 × 10-8) were tested for replication in separate European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discovered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we examined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a polygenic risk score. All statistical tests were two-sided.

Results: The discovery GWAS identified 11 variants associated with CRC at P < 5 × 10-8, of which nine (at 4q22.2/5p15.33/5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial relative risk explained by common risk alleles from 10.3% (95% confidence interval [CI] = 7.9% to 13.7%; known variants) to 11.9% (95% CI = 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio for developing CRC of at least 2.0.

Conclusions: This study provides insight into the architecture of common genetic variation contributing to CRC etiology and improves risk prediction for individualized screening.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djy099DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555904PMC
February 2019

Genome-wide association of white blood cell counts in Hispanic/Latino Americans: the Hispanic Community Health Study/Study of Latinos.

Hum Mol Genet 2017 03;26(6):1193-1204

Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA.

Circulating white blood cell (WBC) counts (neutrophils, monocytes, lymphocytes, eosinophils, basophils) differ by ethnicity. The genetic factors underlying basal WBC traits in Hispanics/Latinos are unknown. We performed a genome-wide association study of total WBC and differential counts in a large, ethnically diverse US population sample of Hispanics/Latinos ascertained by the Hispanic Community Health Study and Study of Latinos (HCHS/SOL). We demonstrate that several previously known WBC-associated genetic loci (e.g. the African Duffy antigen receptor for chemokines null variant for neutrophil count) are generalizable to WBC traits in Hispanics/Latinos. We identified and replicated common and rare germ-line variants at FLT3 (a gene often somatically mutated in leukemia) associated with monocyte count. The common FLT3 variant rs76428106 has a large allele frequency differential between African and non-African populations. We also identified several novel genetic loci involving or regulating hematopoietic transcription factors (CEBPE-SLC7A7, CEBPA and CRBN-TRNT1) associated with basophil count. The minor allele of the CEBPE variant associated with lower basophil count has been previously associated with Amerindian ancestry and higher risk of acute lymphoblastic leukemia in Hispanics. Together, these data suggest that germline genetic variation affecting transcriptional and signaling pathways that underlie WBC development and lineage specification can contribute to inter-individual as well as ethnic differences in peripheral blood cell counts (normal hematopoiesis) in addition to susceptibility to leukemia (malignant hematopoiesis).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddx024DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5968624PMC
March 2017

Genome-Wide Association Study Reveals Multiple Loci Influencing Normal Human Facial Morphology.

PLoS Genet 2016 Aug 25;12(8):e1006149. Epub 2016 Aug 25.

Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.

Numerous lines of evidence point to a genetic basis for facial morphology in humans, yet little is known about how specific genetic variants relate to the phenotypic expression of many common facial features. We conducted genome-wide association meta-analyses of 20 quantitative facial measurements derived from the 3D surface images of 3118 healthy individuals of European ancestry belonging to two US cohorts. Analyses were performed on just under one million genotyped SNPs (Illumina OmniExpress+Exome v1.2 array) imputed to the 1000 Genomes reference panel (Phase 3). We observed genome-wide significant associations (p < 5 x 10-8) for cranial base width at 14q21.1 and 20q12, intercanthal width at 1p13.3 and Xq13.2, nasal width at 20p11.22, nasal ala length at 14q11.2, and upper facial depth at 11q22.1. Several genes in the associated regions are known to play roles in craniofacial development or in syndromes affecting the face: MAFB, PAX9, MIPOL1, ALX3, HDAC8, and PAX1. We also tested genotype-phenotype associations reported in two previous genome-wide studies and found evidence of replication for nasal ala length and SNPs in CACNA2D3 and PRDM16. These results provide further evidence that common variants in regions harboring genes of known craniofacial function contribute to normal variation in human facial features. Improved understanding of the genes associated with facial morphology in healthy individuals can provide insights into the pathways and mechanisms controlling normal and abnormal facial morphogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1006149DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4999139PMC
August 2016

A multi-ethnic genome-wide association study identifies novel loci for non-syndromic cleft lip with or without cleft palate on 2p24.2, 17q23 and 19q13.

Hum Mol Genet 2016 07 30;25(13):2862-2872. Epub 2016 Mar 30.

Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.

Orofacial clefts (OFCs), which include non-syndromic cleft lip with or without cleft palate (CL/P), are among the most common birth defects in humans, affecting approximately 1 in 700 newborns. CL/P is phenotypically heterogeneous and has a complex etiology caused by genetic and environmental factors. Previous genome-wide association studies (GWASs) have identified at least 15 risk loci for CL/P. As these loci do not account for all of the genetic variance of CL/P, we hypothesized the existence of additional risk loci. We conducted a multiethnic GWAS in 6480 participants (823 unrelated cases, 1700 unrelated controls and 1319 case-parent trios) with European, Asian, African and Central and South American ancestry. Our GWAS revealed novel associations on 2p24 near FAM49A, a gene of unknown function (P = 4.22 × 10), and 19q13 near RHPN2, a gene involved in organizing the actin cytoskeleton (P = 4.17 × 10). Other regions reaching genome-wide significance were 1p36 (PAX7), 1p22 (ARHGAP29), 1q32 (IRF6), 8q24 and 17p13 (NTN1), all reported in previous GWASs. Stratification by ancestry group revealed a novel association with a region on 17q23 (P = 2.92 × 10) among individuals with European ancestry. This region included several promising candidates including TANC2, an oncogene required for development, and DCAF7, a scaffolding protein required for craniofacial development. In the Central and South American ancestry group, significant associations with loci previously identified in Asian or European ancestry groups reflected their admixed ancestry. In summary, we have identified novel CL/P risk loci and suggest new genes involved in craniofacial development, confirming the highly heterogeneous etiology of OFCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddw104DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5181632PMC
July 2016

A Genome-wide Association Study of Nonsyndromic Cleft Palate Identifies an Etiologic Missense Variant in GRHL3.

Am J Hum Genet 2016 Apr 24;98(4):744-54. Epub 2016 Mar 24.

Fundación Clínica Noel, Medellin 050012, Colombia.

Cleft palate (CP) is a common birth defect occurring in 1 in 2,500 live births. Approximately half of infants with CP have a syndromic form, exhibiting other physical and cognitive disabilities. The other half have nonsyndromic CP, and to date, few genes associated with risk for nonsyndromic CP have been characterized. To identify such risk factors, we performed a genome-wide association study of this disorder. We discovered a genome-wide significant association with a missense variant in GRHL3 (p.Thr454Met [c.1361C>T]; rs41268753; p = 4.08 × 10(-9)) and replicated the result in an independent sample of case and control subjects. In both the discovery and replication samples, rs41268753 conferred increased risk for CP (OR = 8.3, 95% CI 4.1-16.8; OR = 2.16, 95% CI 1.43-3.27, respectively). In luciferase transactivation assays, p.Thr454Met had about one-third of the activity of wild-type GRHL3, and in zebrafish embryos, perturbed periderm development. We conclude that this mutation is an etiologic variant for nonsyndromic CP and is one of few functional variants identified to date for nonsyndromic orofacial clefting. This finding advances our understanding of the genetic basis of craniofacial development and might ultimately lead to improvements in recurrence risk prediction, treatment, and prognosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2016.02.014DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4833215PMC
April 2016

Genome-wide Association Study of Platelet Count Identifies Ancestry-Specific Loci in Hispanic/Latino Americans.

Am J Hum Genet 2016 Feb 21;98(2):229-42. Epub 2016 Jan 21.

Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Platelets play an essential role in hemostasis and thrombosis. We performed a genome-wide association study of platelet count in 12,491 participants of the Hispanic Community Health Study/Study of Latinos by using a mixed-model method that accounts for admixture and family relationships. We discovered and replicated associations with five genes (ACTN1, ETV7, GABBR1-MOG, MEF2C, and ZBTB9-BAK1). Our strongest association was with Amerindian-specific variant rs117672662 (p value = 1.16 × 10(-28)) in ACTN1, a gene implicated in congenital macrothrombocytopenia. rs117672662 exhibited allelic differences in transcriptional activity and protein binding in hematopoietic cells. Our results underscore the value of diverse populations to extend insights into the allelic architecture of complex traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2015.12.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746331PMC
February 2016

Genetic Diversity and Association Studies in US Hispanic/Latino Populations: Applications in the Hispanic Community Health Study/Study of Latinos.

Am J Hum Genet 2016 Jan;98(1):165-84

Division of Cardiovascular Sciences, NHLBI, NIH, Bethesda, MD 20892, USA.

US Hispanic/Latino individuals are diverse in genetic ancestry, culture, and environmental exposures. Here, we characterized and controlled for this diversity in genome-wide association studies (GWASs) for the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). We simultaneously estimated population-structure principal components (PCs) robust to familial relatedness and pairwise kinship coefficients (KCs) robust to population structure, admixture, and Hardy-Weinberg departures. The PCs revealed substantial genetic differentiation within and among six self-identified background groups (Cuban, Dominican, Puerto Rican, Mexican, and Central and South American). To control for variation among groups, we developed a multi-dimensional clustering method to define a "genetic-analysis group" variable that retains many properties of self-identified background while achieving substantially greater genetic homogeneity within groups and including participants with non-specific self-identification. In GWASs of 22 biomedical traits, we used a linear mixed model (LMM) including pairwise empirical KCs to account for familial relatedness, PCs for ancestry, and genetic-analysis groups for additional group-associated effects. Including the genetic-analysis group as a covariate accounted for significant trait variation in 8 of 22 traits, even after we fit 20 PCs. Additionally, genetic-analysis groups had significant heterogeneity of residual variance for 20 of 22 traits, and modeling this heteroscedasticity within the LMM reduced genomic inflation for 19 traits. Furthermore, fitting an LMM that utilized a genetic-analysis group rather than a self-identified background group achieved higher power to detect previously reported associations. We expect that the methods applied here will be useful in other studies with multiple ethnic groups, admixture, and relatedness.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2015.12.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4716704PMC
January 2016

Genome-wide association study of dental caries in the Hispanic Communities Health Study/Study of Latinos (HCHS/SOL).

Hum Mol Genet 2016 Feb 11;25(4):807-16. Epub 2015 Dec 11.

Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261, USA,

Dental caries is the most common chronic disease worldwide, and exhibits profound disparities in the USA with racial and ethnic minorities experiencing disproportionate disease burden. Though heritable, the specific genes influencing risk of dental caries remain largely unknown. Therefore, we performed genome-wide association scans (GWASs) for dental caries in a population-based cohort of 12 000 Hispanic/Latino participants aged 18-74 years from the HCHS/SOL. Intra-oral examinations were used to generate two common indices of dental caries experience which were tested for association with 27.7 M genotyped or imputed single-nucleotide polymorphisms separately in the six ancestry groups. A mixed-models approach was used, which adjusted for age, sex, recruitment site, five principal components of ancestry and additional features of the sampling design. Meta-analyses were used to combine GWAS results across ancestry groups. Heritability estimates ranged from 20-53% in the six ancestry groups. The most significant association observed via meta-analysis for both phenotypes was in the region of the NAMPT gene (rs190395159; P-value = 6 × 10(-10)), which is involved in many biological processes including periodontal healing. Another significant association was observed for rs72626594 (P-value = 3 × 10(-8)) downstream of BMP7, a tooth development gene. Other associations were observed in genes lacking known or plausible roles in dental caries. In conclusion, this was the largest GWAS of dental caries, to date and was the first to target Hispanic/Latino populations. Understanding the factors influencing dental caries susceptibility may lead to improvements in prediction, prevention and disease management, which may ultimately reduce the disparities in oral health across racial, ethnic and socioeconomic strata.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddv506DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743689PMC
February 2016

Genome-wide association study of colorectal cancer identifies six new susceptibility loci.

Nat Commun 2015 Jul 7;6:7138. Epub 2015 Jul 7.

Harvard Medical School, Boston, Massachusetts 02114, USA.

Genetic susceptibility to colorectal cancer is caused by rare pathogenic mutations and common genetic variants that contribute to familial risk. Here we report the results of a two-stage association study with 18,299 cases of colorectal cancer and 19,656 controls, with follow-up of the most statistically significant genetic loci in 4,725 cases and 9,969 controls from two Asian consortia. We describe six new susceptibility loci reaching a genome-wide threshold of P<5.0E-08. These findings provide additional insight into the underlying biological mechanisms of colorectal cancer and demonstrate the scientific value of large consortia-based genetic epidemiology studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms8138DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967357PMC
July 2015

Acquired chromosomal anomalies in chronic lymphocytic leukemia patients compared with more than 50,000 quasi-normal participants.

Cancer Genet 2014 Jan-Feb;207(1-2):19-30. Epub 2014 Jan 17.

Division of Hematology, Mayo Clinic, Rochester, MN, USA.

Pretherapy patients with chronic lymphocytic leukemia (CLL) from US Intergroup trial E2997 were analyzed with single nucleotide polymorphism microarrays to detect acquired chromosomal anomalies. The four CLL-typical anomalies (11q-, +12, 13q-, and 17p-) were found at expected frequencies. Acquired anomalies in other regions account for 70% of the total detected anomalies, and their number per participant has a significant effect on progression-free survival after adjusting for the effects of 17p- (and other covariates). These results were compared with those from a previous study of more than 50,000 participants from the GENEVA consortium of genome-wide association studies, which analyzed individuals with a variety of medical conditions and healthy controls. The percentage of individuals with acquired anomalies is vastly different between the two studies (GENEVA 0.8%; E2997 80%). The composition of the anomalies also differs, with GENEVA having a higher percentage of acquired uniparental disomies and a lower percentage of deletions. The four common CLL anomalies are among the most frequent in GENEVA participants, some of whom may have CLL-precursor conditions or early stages of CLL. However, the patients from E2997 (and other studies of symptomatic CLL) have recurrent acquired anomalies that were not found in GENEVA participants, thus identifying genomic changes that may be unique to symptomatic stages of CLL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cancergen.2014.01.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074414PMC
May 2014

Imputation-based genomic coverage assessments of current human genotyping arrays.

G3 (Bethesda) 2013 Oct 3;3(10):1795-807. Epub 2013 Oct 3.

Department of Biostatistics, University of Washington, Seattle, Washington, 98195.

Microarray single-nucleotide polymorphism genotyping, combined with imputation of untyped variants, has been widely adopted as an efficient means to interrogate variation across the human genome. "Genomic coverage" is the total proportion of genomic variation captured by an array, either by direct observation or through an indirect means such as linkage disequilibrium or imputation. We have performed imputation-based genomic coverage assessments of eight current genotyping arrays that assay from ~0.3 to ~5 million variants. Coverage was determined separately in each of the four continental ancestry groups in the 1000 Genomes Project phase 1 release. We used the subset of 1000 Genomes variants present on each array to impute the remaining variants and assessed coverage based on correlation between imputed and observed allelic dosages. More than 75% of common variants (minor allele frequency > 0.05) are covered by all arrays in all groups except for African ancestry, and up to ~90% in all ancestries for the highest density arrays. In contrast, less than 40% of less common variants (0.01 < minor allele frequency < 0.05) are covered by low density arrays in all ancestries and 50-80% in high density arrays, depending on ancestry. We also calculated genome-wide power to detect variant-trait association in a case-control design, across varying sample sizes, effect sizes, and minor allele frequency ranges, and compare these array-based power estimates with a hypothetical array that would type all variants in 1000 Genomes. These imputation-based genomic coverage and power analyses are intended as a practical guide to researchers planning genetic studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1534/g3.113.007161DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789804PMC
October 2013

Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis.

Gastroenterology 2013 Apr 22;144(4):799-807.e24. Epub 2012 Dec 22.

Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.

Background & Aims: Heritable factors contribute to the development of colorectal cancer. Identifying the genetic loci associated with colorectal tumor formation could elucidate the mechanisms of pathogenesis.

Methods: We conducted a genome-wide association study that included 14 studies, 12,696 cases of colorectal tumors (11,870 cancer, 826 adenoma), and 15,113 controls of European descent. The 10 most statistically significant, previously unreported findings were followed up in 6 studies; these included 3056 colorectal tumor cases (2098 cancer, 958 adenoma) and 6658 controls of European and Asian descent.

Results: Based on the combined analysis, we identified a locus that reached the conventional genome-wide significance level at less than 5.0 × 10(-8): an intergenic region on chromosome 2q32.3, close to nucleic acid binding protein 1 (most significant single nucleotide polymorphism: rs11903757; odds ratio [OR], 1.15 per risk allele; P = 3.7 × 10(-8)). We also found evidence for 3 additional loci with P values less than 5.0 × 10(-7): a locus within the laminin gamma 1 gene on chromosome 1q25.3 (rs10911251; OR, 1.10 per risk allele; P = 9.5 × 10(-8)), a locus within the cyclin D2 gene on chromosome 12p13.32 (rs3217810 per risk allele; OR, 0.84; P = 5.9 × 10(-8)), and a locus in the T-box 3 gene on chromosome 12q24.21 (rs59336; OR, 0.91 per risk allele; P = 3.7 × 10(-7)).

Conclusions: In a large genome-wide association study, we associated polymorphisms close to nucleic acid binding protein 1 (which encodes a DNA-binding protein involved in DNA repair) with colorectal tumor risk. We also provided evidence for an association between colorectal tumor risk and polymorphisms in laminin gamma 1 (this is the second gene in the laminin family to be associated with colorectal cancers), cyclin D2 (which encodes for cyclin D2), and T-box 3 (which encodes a T-box transcription factor and is a target of Wnt signaling to β-catenin). The roles of these genes and their products in cancer pathogenesis warrant further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2012.12.020DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636812PMC
April 2013

GWASTools: an R/Bioconductor package for quality control and analysis of genome-wide association studies.

Bioinformatics 2012 Dec 10;28(24):3329-31. Epub 2012 Oct 10.

Department of Biostatistics, University of Washington, Seattle, WA, USA.

GWASTools is an R/Bioconductor package for quality control and analysis of genome-wide association studies (GWAS). GWASTools brings the interactive capability and extensive statistical libraries of R to GWAS. Data are stored in NetCDF format to accommodate extremely large datasets that cannot fit within R's memory limits. The documentation includes instructions for converting data from multiple formats, including variants called from sequencing. GWASTools provides a convenient interface for linking genotypes and intensity data with sample and single nucleotide polymorphism annotation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bts610DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519456PMC
December 2012

Detectable clonal mosaicism from birth to old age and its relationship to cancer.

Nat Genet 2012 May 6;44(6):642-50. Epub 2012 May 6.

Department of Biostatistics, University of Washington, Seattle, Washington, USA.

We detected clonal mosaicism for large chromosomal anomalies (duplications, deletions and uniparental disomy) using SNP microarray data from over 50,000 subjects recruited for genome-wide association studies. This detection method requires a relatively high frequency of cells with the same abnormal karyotype (>5-10%; presumably of clonal origin) in the presence of normal cells. The frequency of detectable clonal mosaicism in peripheral blood is low (<0.5%) from birth until 50 years of age, after which it rapidly rises to 2-3% in the elderly. Many of the mosaic anomalies are characteristic of those found in hematological cancers and identify common deleted regions with genes previously associated with these cancers. Although only 3% of subjects with detectable clonal mosaicism had any record of hematological cancer before DNA sampling, those without a previous diagnosis have an estimated tenfold higher risk of a subsequent hematological cancer (95% confidence interval = 6-18).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.2271DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366033PMC
May 2012