Publications by authors named "Catherine Jacob-Dolan"

15 Publications

  • Page 1 of 1

Protective efficacy of Ad26.COV2.S against SARS-CoV-2 B.1.351 in macaques.

Nature 2021 Jun 23. Epub 2021 Jun 23.

Bioqual, Rockville, MD, USA.

The emergence of SARS-CoV-2 variants that partially evade neutralizing antibodies poses a threat to the efficacy of current COVID-19 vaccines. The Ad26.COV2.S vaccine expresses a stabilized spike protein from the WA1/2020 strain of SARS-CoV-2, and has recently demonstrated protective efficacy against symptomatic COVID-19 in humans in several geographical regions-including in South Africa, where 95% of sequenced viruses in cases of COVID-19 were the B.1.351 variant. Here we show that Ad26.COV2.S elicits humoral and cellular immune responses that cross-react with the B.1.351 variant and protects against B.1.351 challenge in rhesus macaques. Ad26.COV2.S induced lower binding and neutralizing antibodies against B.1.351 as compared to WA1/2020, but elicited comparable CD8 and CD4 T cell responses against the WA1/2020, B.1.351, B.1.1.7, P.1 and CAL.20C variants. B.1.351 infection of control rhesus macaques resulted in higher levels of virus replication in bronchoalveolar lavage and nasal swabs than did WA1/2020 infection. Ad26.COV2.S provided robust protection against both WA1/2020 and B.1.351, although we observed higher levels of virus in vaccinated macaques after B.1.351 challenge. These data demonstrate that Ad26.COV2.S provided robust protection against B.1.351 challenge in rhesus macaques. Our findings have important implications for vaccine control of SARS-CoV-2 variants of concern.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03732-8DOI Listing
June 2021

Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans.

Nature 2021 Jun 9. Epub 2021 Jun 9.

Janssen Vaccines & Prevention, Leiden, The Netherlands.

The Ad26.COV2.S vaccine has demonstrated clinical efficacy against symptomatic COVID-19, including against the B.1.351 variant that is partially resistant to neutralizing antibodies. However, the immunogenicity of this vaccine in humans against SARS-CoV-2 variants of concern remains unclear. Here we report humoral and cellular immune responses from 20 Ad26.COV2.S vaccinated individuals from the COV1001 phase I-IIa clinical trial against the original SARS-CoV-2 strain WA1/2020 as well as against the B.1.1.7, CAL.20C, P.1 and B.1.351 variants of concern. Ad26.COV2.S induced median pseudovirus neutralizing antibody titres that were 5.0-fold and 3.3-fold lower against the B.1.351 and P.1 variants, respectively, as compared with WA1/2020 on day 71 after vaccination. Median binding antibody titres were 2.9-fold and 2.7-fold lower against the B.1.351 and P.1 variants, respectively, as compared with WA1/2020. Antibody-dependent cellular phagocytosis, complement deposition and natural killer cell activation responses were largely preserved against the B.1.351 variant. CD8 and CD4 T cell responses, including central and effector memory responses, were comparable among the WA1/2020, B.1.1.7, B.1.351, P.1 and CAL.20C variants. These data show that neutralizing antibody responses induced by Ad26.COV2.S were reduced against the B.1.351 and P.1 variants, but functional non-neutralizing antibody responses and T cell responses were largely preserved against SARS-CoV-2 variants. These findings have implications for vaccine protection against SARS-CoV-2 variants of concern.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03681-2DOI Listing
June 2021

Immunogenicity of COVID-19 mRNA Vaccines in Pregnant and Lactating Women.

JAMA 2021 06;325(23):2370-2380

Harvard Medical School, Boston, Massachusetts.

Importance: Pregnant women are at increased risk of morbidity and mortality from COVID-19 but have been excluded from the phase 3 COVID-19 vaccine trials. Data on vaccine safety and immunogenicity in these populations are therefore limited.

Objective: To evaluate the immunogenicity of COVID-19 messenger RNA (mRNA) vaccines in pregnant and lactating women, including against emerging SARS-CoV-2 variants of concern.

Design, Setting, And Participants: An exploratory, descriptive, prospective cohort study enrolled 103 women who received a COVID-19 vaccine from December 2020 through March 2021 and 28 women who had confirmed SARS-CoV-2 infection from April 2020 through March 2021 (the last follow-up date was March 26, 2021). This study enrolled 30 pregnant, 16 lactating, and 57 neither pregnant nor lactating women who received either the mRNA-1273 (Moderna) or BNT162b2 (Pfizer-BioNTech) COVID-19 vaccines and 22 pregnant and 6 nonpregnant unvaccinated women with SARS-CoV-2 infection.

Main Outcomes And Measures: SARS-CoV-2 receptor binding domain binding, neutralizing, and functional nonneutralizing antibody responses from pregnant, lactating, and nonpregnant women were assessed following vaccination. Spike-specific T-cell responses were evaluated using IFN-γ enzyme-linked immunospot and multiparameter intracellular cytokine-staining assays. Humoral and cellular immune responses were determined against the original SARS-CoV-2 USA-WA1/2020 strain as well as against the B.1.1.7 and B.1.351 variants.

Results: This study enrolled 103 women aged 18 to 45 years (66% non-Hispanic White) who received a COVID-19 mRNA vaccine. After the second vaccine dose, fever was reported in 4 pregnant women (14%; SD, 6%), 7 lactating women (44%; SD, 12%), and 27 nonpregnant women (52%; SD, 7%). Binding, neutralizing, and functional nonneutralizing antibody responses as well as CD4 and CD8 T-cell responses were present in pregnant, lactating, and nonpregnant women following vaccination. Binding and neutralizing antibodies were also observed in infant cord blood and breast milk. Binding and neutralizing antibody titers against the SARS-CoV-2 B.1.1.7 and B.1.351 variants of concern were reduced, but T-cell responses were preserved against viral variants.

Conclusion And Relevance: In this exploratory analysis of a convenience sample, receipt of a COVID-19 mRNA vaccine was immunogenic in pregnant women, and vaccine-elicited antibodies were transported to infant cord blood and breast milk. Pregnant and nonpregnant women who were vaccinated developed cross-reactive antibody responses and T-cell responses against SARS-CoV-2 variants of concern.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jama.2021.7563DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120446PMC
June 2021

Correlates of Neutralization against SARS-CoV-2 Variants of Concern by Early Pandemic Sera.

J Virol 2021 06 24;95(14):e0040421. Epub 2021 Jun 24.

Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.

Emerging SARS-CoV-2 variants of concern that overcome natural and vaccine-induced immunity threaten to exacerbate the COVID-19 pandemic. Increasing evidence suggests that neutralizing antibody (NAb) responses are a primary mechanism of protection against infection. However, little is known about the extent and mechanisms by which natural immunity acquired during the early COVID-19 pandemic confers cross-neutralization of emerging variants. In this study, we investigated cross-neutralization of the B.1.1.7 and B.1.351 SARS-CoV-2 variants in a well-characterized cohort of early pandemic convalescent subjects. We observed modestly decreased cross-neutralization of B.1.1.7 but a substantial 4.8-fold reduction in cross-neutralization of B.1.351. Correlates of cross-neutralization included receptor binding domain (RBD) and N-terminal domain (NTD) binding antibodies, homologous NAb titers, and membrane-directed T cell responses. These data shed light on the cross-neutralization of emerging variants by early pandemic convalescent immune responses. Widespread immunity to SARS-CoV-2 will be necessary to end the COVID-19 pandemic. NAb responses are a critical component of immunity that can be stimulated by natural infection as well as vaccines. However, SARS-CoV-2 variants are emerging that contain mutations in the spike gene that promote evasion from NAb responses. These variants may therefore delay control of the COVID-19 pandemic. We studied whether NAb responses from early COVID-19 convalescent patients are effective against the two SARS-CoV-2 variants, B.1.1.7 and B.1.351. We observed that the B.1.351 variant demonstrates significantly reduced susceptibility to early pandemic NAb responses. We additionally characterized virological, immunological, and clinical features that correlate with cross-neutralization. These studies increase our understanding of emerging SARS-CoV-2 variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.00404-21DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223959PMC
June 2021

Deletion of the SARS-CoV-2 Spike Cytoplasmic Tail Increases Infectivity in Pseudovirus Neutralization Assays.

J Virol 2021 Mar 16. Epub 2021 Mar 16.

Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA

Pseudotyped viruses are valuable tools for studying virulent or lethal viral pathogens that need to be handled in biosafety level 3 (BSL-3) or higher facilities. With the explosive spread of the coronavirus disease 2019 (COVID-19) pandemic, the establishment of a BSL-2 adapted SARS-CoV-2 pseudovirus neutralization assay is needed to facilitate the development of countermeasures. Here we describe an approach to generate a single-round lentiviral vector-based SARS-CoV-2 pseudovirus, which produced a signal more than 2 logs above background. Specifically, a SARS-CoV-2 spike variant with a cytoplasmic tail deletion of 13 amino acids, termed SΔCT13, conferred enhanced spike incorporation into pseudovirions and increased viral entry into cells as compared with full-length spike (S). We further compared S and SΔCT13 in terms of their sensitivity to vaccine sera, purified convalescent IgG, hACE2-mIgG, and the virus entry inhibitor BafA1. We developed a SΔCT13-based pseudovirus neutralization assay and defined key assay characteristics, including linearity, limit of detection, and intra- and intermediate-assay precision. Our data demonstrate that the SΔCT13-based pseudovirus shows enhanced infectivity in target cells, which will facilitate the assessment of humoral immunity to SARS-CoV-2 infection, antibody therapeutics, and vaccination. This pseudovirus neutralization assay can also be readily adapted to SARS-CoV-2 variants that emerge.SARS-CoV-2 is the etiologic agent of the COVID-19 pandemic. The development of a high throughput pseudovirus neutralization assay is critical for the development of vaccines and immune-based therapeutics. In this study, we show that deletion of the cytoplasmic tail of the SARS-CoV-2 spike leads to pseudoviruses with enhanced infectivity. This SΔCT13-based pseudovirus neutralization assay should be broadly useful for the field.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.00044-21DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139703PMC
March 2021

Immunogenicity of the Ad26.COV2.S Vaccine for COVID-19.

JAMA 2021 04;325(15):1535-1544

Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts.

Importance: Control of the global COVID-19 pandemic will require the development and deployment of safe and effective vaccines.

Objective: To evaluate the immunogenicity of the Ad26.COV2.S vaccine (Janssen/Johnson & Johnson) in humans, including the kinetics, magnitude, and phenotype of SARS-CoV-2 spike-specific humoral and cellular immune responses.

Design, Setting, And Participants: Twenty-five participants were enrolled from July 29, 2020, to August 7, 2020, and the follow-up for this day 71 interim analysis was completed on October 3, 2020; follow-up to assess durability will continue for 2 years. This study was conducted at a single clinical site in Boston, Massachusetts, as part of a randomized, double-blind, placebo-controlled phase 1 clinical trial of Ad26.COV2.S.

Interventions: Participants were randomized to receive 1 or 2 intramuscular injections with 5 × 1010 viral particles or 1 × 1011 viral particles of Ad26.COV2.S vaccine or placebo administered on day 1 and day 57 (5 participants in each group).

Main Outcomes And Measures: Humoral immune responses included binding and neutralizing antibody responses at multiple time points following immunization. Cellular immune responses included immunospot-based and intracellular cytokine staining assays to measure T-cell responses.

Results: Twenty-five participants were randomized (median age, 42; age range, 22-52; 52% women, 44% male, 4% undifferentiated), and all completed the trial through the day 71 interim end point. Binding and neutralizing antibodies emerged rapidly by day 8 after initial immunization in 90% and 25% of vaccine recipients, respectively. By day 57, binding and neutralizing antibodies were detected in 100% of vaccine recipients after a single immunization. On day 71, the geometric mean titers of spike-specific binding antibodies were 2432 to 5729 and the geometric mean titers of neutralizing antibodies were 242 to 449 in the vaccinated groups. A variety of antibody subclasses, Fc receptor binding properties, and antiviral functions were induced. CD4+ and CD8+ T-cell responses were induced.

Conclusion And Relevance: In this phase 1 study, a single immunization with Ad26.COV2.S induced rapid binding and neutralization antibody responses as well as cellular immune responses. Two phase 3 clinical trials are currently underway to determine the efficacy of the Ad26.COV2.S vaccine.

Trial Registration: ClinicalTrials.gov Identifier: NCT04436276.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jama.2021.3645DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7953339PMC
April 2021

Coronavirus-Specific Antibody Cross Reactivity in Rhesus Macaques Following SARS-CoV-2 Vaccination and Infection.

J Virol 2021 Mar 10. Epub 2021 Mar 10.

Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA

Vaccines are being rapidly developed with the goal of ending the SARS-CoV-2 pandemic. However, the extent to which SARS-CoV-2 vaccination induces serum responses that cross-react with other coronaviruses remains poorly studied. Here we define serum profiles in rhesus macaques after vaccination with DNA or Ad26 based vaccines expressing SARS-CoV-2 Spike protein followed by SARS-CoV-2 challenge, or SARS-CoV-2 infection alone. Analysis of serum responses showed robust reactivity to the SARS-CoV-2 full-length Spike protein and receptor binding domain (RBD), both included in the vaccine. However, serum cross-reactivity to the closely related sarbecovirus SARS-CoV-1 Spike and RBD, was reduced. Reactivity was also measured to the distantly related common cold alpha-coronavirus, 229E and NL63, and beta-coronavirus, OC43 and HKU1, Spike proteins. Using SARS-COV-2 and SARS-CoV-1 lentivirus based pseudoviruses, we show that neutralizing antibody responses were predominantly SARS-CoV-2 specific. These data define patterns of cross-reactive binding and neutralizing serum responses induced by SARS-CoV-2 infection and vaccination in rhesus macaques. Our observations have important implications for understanding polyclonal responses to SARS-CoV-2 Spike, which will facilitate future CoV vaccine assessment and development.The rapid development and deployment of SARS-CoV-2 vaccines has been unprecedented. In this study, we explore the cross-reactivity of SARS-CoV-2 specific antibody responses to other coronaviruses. By analyzing responses from NHPs both before and after immunization with DNA or Ad26 vectored vaccines, we find patterns of cross reactivity that mirror those induced by SARS-CoV-2 infection. These data highlight the similarities between infection and vaccine induced humoral immunity for SARS-CoV-2 and cross-reactivity of these responses to other CoVs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.00117-21DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139699PMC
March 2021

Correlates of protection against SARS-CoV-2 in rhesus macaques.

Nature 2021 02 4;590(7847):630-634. Epub 2020 Dec 4.

Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Recent studies have reported the protective efficacy of both natural and vaccine-induced immunity against challenge with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in rhesus macaques. However, the importance of humoral and cellular immunity for protection against infection with SARS-CoV-2 remains to be determined. Here we show that the adoptive transfer of purified IgG from convalescent rhesus macaques (Macaca mulatta) protects naive recipient macaques against challenge with SARS-CoV-2 in a dose-dependent fashion. Depletion of CD8 T cells in convalescent macaques partially abrogated the protective efficacy of natural immunity against rechallenge with SARS-CoV-2, which suggests a role for cellular immunity in the context of waning or subprotective antibody titres. These data demonstrate that relatively low antibody titres are sufficient for protection against SARS-CoV-2 in rhesus macaques, and that cellular immune responses may contribute to protection if antibody responses are suboptimal. We also show that higher antibody titres are required for treatment of SARS-CoV-2 infection in macaques. These findings have implications for the development of SARS-CoV-2 vaccines and immune-based therapeutic agents.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-03041-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906955PMC
February 2021

Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters.

Nat Med 2020 11 3;26(11):1694-1700. Epub 2020 Sep 3.

Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Coronavirus disease 2019 (COVID-19) in humans is often a clinically mild illness, but some individuals develop severe pneumonia, respiratory failure and death. Studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hamsters and nonhuman primates have generally reported mild clinical disease, and preclinical SARS-CoV-2 vaccine studies have demonstrated reduction of viral replication in the upper and lower respiratory tracts in nonhuman primates. Here we show that high-dose intranasal SARS-CoV-2 infection in hamsters results in severe clinical disease, including high levels of virus replication in tissues, extensive pneumonia, weight loss and mortality in a subset of animals. A single immunization with an adenovirus serotype 26 vector-based vaccine expressing a stabilized SARS-CoV-2 spike protein elicited binding and neutralizing antibody responses and protected against SARS-CoV-2-induced weight loss, pneumonia and mortality. These data demonstrate vaccine protection against SARS-CoV-2 clinical disease. This model should prove useful for preclinical studies of SARS-CoV-2 vaccines, therapeutics and pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-020-1070-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671939PMC
November 2020

Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques.

Nature 2020 10 30;586(7830):583-588. Epub 2020 Jul 30.

Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

A safe and effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be required to end the coronavirus disease 2019 (COVID-19) pandemic. For global deployment and pandemic control, a vaccine that requires only a single immunization would be optimal. Here we show the immunogenicity and protective efficacy of a single dose of adenovirus serotype 26 (Ad26) vector-based vaccines expressing the SARS-CoV-2 spike (S) protein in non-human primates. Fifty-two rhesus macaques (Macaca mulatta) were immunized with Ad26 vectors that encoded S variants or sham control, and then challenged with SARS-CoV-2 by the intranasal and intratracheal routes. The optimal Ad26 vaccine induced robust neutralizing antibody responses and provided complete or near-complete protection in bronchoalveolar lavage and nasal swabs after SARS-CoV-2 challenge. Titres of vaccine-elicited neutralizing antibodies correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate robust single-shot vaccine protection against SARS-CoV-2 in non-human primates. The optimal Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in clinical trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-2607-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581548PMC
October 2020

SARS-CoV-2 infection protects against rechallenge in rhesus macaques.

Science 2020 08 20;369(6505):812-817. Epub 2020 May 20.

Janssen Vaccines & Prevention BV, Leiden, Netherlands.

An understanding of protective immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for vaccine and public health strategies aimed at ending the global coronavirus disease 2019 (COVID-19) pandemic. A key unanswered question is whether infection with SARS-CoV-2 results in protective immunity against reexposure. We developed a rhesus macaque model of SARS-CoV-2 infection and observed that macaques had high viral loads in the upper and lower respiratory tract, humoral and cellular immune responses, and pathologic evidence of viral pneumonia. After the initial viral clearance, animals were rechallenged with SARS-CoV-2 and showed 5 log reductions in median viral loads in bronchoalveolar lavage and nasal mucosa compared with after the primary infection. Anamnestic immune responses after rechallenge suggested that protection was mediated by immunologic control. These data show that SARS-CoV-2 infection induced protective immunity against reexposure in nonhuman primates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abc4776DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243369PMC
August 2020

DNA vaccine protection against SARS-CoV-2 in rhesus macaques.

Science 2020 08 20;369(6505):806-811. Epub 2020 May 20.

Bioqual, Rockville, MD 20852, USA.

The global coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made the development of a vaccine a top biomedical priority. In this study, we developed a series of DNA vaccine candidates expressing different forms of the SARS-CoV-2 spike (S) protein and evaluated them in 35 rhesus macaques. Vaccinated animals developed humoral and cellular immune responses, including neutralizing antibody titers at levels comparable to those found in convalescent humans and macaques infected with SARS-CoV-2. After vaccination, all animals were challenged with SARS-CoV-2, and the vaccine encoding the full-length S protein resulted in >3.1 and >3.7 log reductions in median viral loads in bronchoalveolar lavage and nasal mucosa, respectively, as compared with viral loads in sham controls. Vaccine-elicited neutralizing antibody titers correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate vaccine protection against SARS-CoV-2 in nonhuman primates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abc6284DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243363PMC
August 2020

Adenovirus Vector-Based Vaccines Confer Maternal-Fetal Protection against Zika Virus Challenge in Pregnant IFN-αβR Mice.

Cell Host Microbe 2019 11 24;26(5):591-600.e4. Epub 2019 Oct 24.

Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA. Electronic address:

Maternal infection with Zika virus (ZIKV) can lead to microcephaly and other congenital abnormalities of the fetus. Although ZIKV vaccines that prevent or reduce viremia in non-pregnant mice have been described, a maternal vaccine that provides complete fetal protection would be desirable. Here, we show that adenovirus (Ad) vector-based ZIKV vaccines induce potent neutralizing antibodies that confer robust maternal and fetal protection against ZIKV challenge in pregnant, highly susceptible IFN-αβR mice. Moreover, passive transfer of maternal antibodies from vaccinated dams protected pups against post-natal ZIKV challenge. These data suggest that Ad-based ZIKV vaccines may be able to provide protection in pregnant females against fetal ZIKV transmission in utero as well as in infants against ZIKV infection after birth.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2019.10.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6863051PMC
November 2019

A two-hybrid antibody micropattern assay reveals specific interactions of MHC I heavy chains at the cell surface.

Elife 2018 09 5;7. Epub 2018 Sep 5.

Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany.

We demonstrate a two-hybrid assay based on antibody micropatterns to study protein-protein interactions at the cell surface of major histocompatibility complex class I (MHC I) proteins. Anti-tag and conformation-specific antibodies are used for individual capture of specific forms of MHC I proteins that allow for location- and conformation-specific analysis by fluorescence microscopy. The assay is used to study the interactions of MHC I proteins at the cell surface under controlled conditions and to define the involved protein conformations. Our results show that homotypic interactions occur exclusively between MHC I free heavy chains, and we identify the dissociation of the light chain from the MHC I protein complex as a condition for MHC I interactions. The functional role of these MHC I protein-protein interactions at the cell surface needs further investigation. We propose future technical developments of our two-hybrid assay for further analysis of MHC I protein-protein interactions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.34150DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6125123PMC
September 2018
-->