Publications by authors named "Catherine J Cheng"

5 Publications

  • Page 1 of 1

Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma.

J Clin Oncol 2020 11 23;38(32):3794-3804. Epub 2020 Jul 23.

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.

Purpose: Chimeric antigen receptor (CAR) T-cell therapy of B-cell malignancies has proved to be effective. We show how the same approach of CAR T cells specific for CD30 (CD30.CAR-Ts) can be used to treat Hodgkin lymphoma (HL).

Methods: We conducted 2 parallel phase I/II studies (ClinicalTrials.gov identifiers: NCT02690545 and NCT02917083) at 2 independent centers involving patients with relapsed or refractory HL and administered CD30.CAR-Ts after lymphodepletion with either bendamustine alone, bendamustine and fludarabine, or cyclophosphamide and fludarabine. The primary end point was safety.

Results: Forty-one patients received CD30.CAR-Ts. Treated patients had a median of 7 prior lines of therapy (range, 2-23), including brentuximab vedotin, checkpoint inhibitors, and autologous or allogeneic stem cell transplantation. The most common toxicities were grade 3 or higher hematologic adverse events. Cytokine release syndrome was observed in 10 patients, all of which were grade 1. No neurologic toxicity was observed. The overall response rate in the 32 patients with active disease who received fludarabine-based lymphodepletion was 72%, including 19 patients (59%) with complete response. With a median follow-up of 533 days, the 1-year progression-free survival and overall survival for all evaluable patients were 36% (95% CI, 21% to 51%) and 94% (95% CI, 79% to 99%), respectively. CAR-T cell expansion in vivo was cell dose dependent.

Conclusion: Heavily pretreated patients with relapsed or refractory HL who received fludarabine-based lymphodepletion followed by CD30.CAR-Ts had a high rate of durable responses with an excellent safety profile, highlighting the feasibility of extending CAR-T cell therapies beyond canonical B-cell malignancies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1200/JCO.20.01342DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655020PMC
November 2020

Genetic drift does not sufficiently explain patterns of electric signal variation among populations of the mormyrid electric fish Paramormyrops kingsleyae.

Evolution 2020 05 13;74(5):911-935. Epub 2020 Apr 13.

Department of Integrative Biology, Michigan State University, East Lansing, Michigan, 48824.

Communication signals serve crucial survival and reproductive functions. In Gabon, the widely distributed mormyrid fish Paramormyrops kingsleyae emits an electric organ discharge (EOD) signal with a dual role in communication and electrolocation that exhibits remarkable variation: populations of P. kingsleyae have either biphasic or triphasic EODs, a feature that characterizes interspecific signal diversity among the Paramormyrops genus. We quantified variation in EODs of 327 P. kingsleyae from nine populations and compared it to genetic variation estimated from microsatellite loci. We found no correlation between electric signal and genetic distances, suggesting that EOD divergence cannot be explained by drift alone. An alternative hypothesis is that EOD differences are used for mate discrimination, which would require P. kingsleyae be capable of differentiating between divergent EOD waveforms. Using a habituation-dishabituation assay, we found that P. kingsleyae can discriminate between biphasic and triphasic EOD types. Nonetheless, patterns of genetic and electric organ morphology divergence provide evidence for hybridization between these signal types. Although reproductive isolation with respect to signal type is incomplete, our results suggest that EOD variation in P. kingsleyae could be a cue for assortative mating.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/evo.13953DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816287PMC
May 2020

Mobilization-based transplantation of young-donor hematopoietic stem cells extends lifespan in mice.

Aging Cell 2020 03 3;19(3):e13110. Epub 2020 Feb 3.

Department of Medicine, UT Health San Antonio, San Antonio, TX, USA.

Mammalian aging is associated with reduced tissue regeneration and loss of physiological integrity. With age, stem cells diminish in their ability to regenerate adult tissues, likely contributing to age-related morbidity. Thus, we replaced aged hematopoietic stem cells (HSCs) with young-donor HSCs using a novel mobilization-enabled hematopoietic stem cell transplantation (HSCT) technology as an alternative to the highly toxic conditioning regimens used in conventional HSCT. Using this approach, we are the first to report an increase in median lifespan (12%) and a decrease in overall mortality hazard (HR: 0.42, CI: 0.273-0.638) in aged mice following transplantation of young-donor HSCs. The increase in longevity was accompanied by reductions of frailty measures and increases in food intake and body weight of aged recipients. Young-donor HSCs not only preserved youthful function within the aged bone marrow stroma, but also at least partially ameliorated dysfunctional hematopoietic phenotypes of aged recipients. This compelling evidence that mammalian health and lifespan can be extended through stem cell therapy adds a new category to the very limited list of successful anti-aging/life-extending interventions. Our findings have implications for further development of stem cell therapies for increasing health and lifespan.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/acel.13110DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059148PMC
March 2020

Genetically heterogeneous mice exhibit a female survival advantage that is age- and site-specific: Results from a large multi-site study.

Aging Cell 2019 06 23;18(3):e12905. Epub 2019 Feb 23.

Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas.

The female survival advantage is a robust characteristic of human longevity. However, underlying mechanisms are not understood, and rodent models exhibiting a female advantage are lacking. Here, we report that the genetically heterogeneous (UM-HET3) mice used by the National Institute on Aging Interventions Testing Program (ITP) are such a model. Analysis of age-specific survival of 3,690 control ITP mice revealed a female survival advantage paralleling that of humans. As in humans, the female advantage in mice was greatest in early adulthood, peaking around 350 days of age and diminishing progressively thereafter. This persistent finding was observed at three geographically distinct sites and in six separate cohorts over a 10-year period. Because males weigh more than females and bodyweight is often inversely related to lifespan, we examined sex differences in the relationship between bodyweight and survival. Although present in both sexes, the inverse relationship between bodyweight and longevity was much stronger in males, indicating that male mortality is more influenced by bodyweight than is female mortality. In addition, male survival varied more across site and cohort than female survival, suggesting greater resistance of females to environmental modulators of survival. Notably, at 24 months the relationship between bodyweight and longevity shifted from negative to positive in both sexes, similar to the human condition in advanced age. These results indicate that the UM-HET3 mouse models the human female survival advantage and provide evidence for greater resilience of females to modulators of survival.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/acel.12905DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516160PMC
June 2019

Behavioral phenotypes associated with MPTP induction of partial lesions in common marmosets (Callithrix jacchus).

Behav Brain Res 2017 05 17;325(Pt A):51-62. Epub 2017 Feb 17.

Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, United States.

Parkinson's disease is a chronic neurodegenerative disorder with the core motor features of resting tremor, bradykinesia, rigidity, and postural instability. Non-motor symptoms also occur, and include cognitive dysfunction, mood disorders, anosmia (loss of smell), and REM sleep disturbances. As the development of medications and other therapies for treatment of non-motor symptoms is ongoing, it is essential to have animal models that aid in understanding the neural changes underlying non-motor PD symptoms and serve as a testing ground for potential therapeutics. We investigated several non-motor symptoms in 10 adult male marmosets using the MPTP model, with both the full (n=5) and partial (n=5) MPTP dosing regimens. Baseline data in numerous domains were collected prior to dosing; assessments in these same domains occurred post-dosing for 12 weeks. Marmosets given the partial MPTP dose (designed to mimic the early stages of the disease) differed significantly from marmosets given the full MPTP dose in several ways, including behavior, olfactory discrimination, cognitive performance, and social responses. Importantly, while spontaneous recovery of PD motor symptoms has been previously reported in studies of MPTP monkeys and cats, we did not observe recovery of any non-motor symptoms. This suggests that the neurochemical mechanisms behind the non-motor symptoms of PD, which appear years before the onset of symptoms, are independent of the striatal dopaminergic transmission. We demonstrate the value of assessing a broad range of behavioral change to detect non-motor impairment, anosmia, and differences in socially appropriate responses, in the marmoset MPTP model of early PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2017.02.010DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5410665PMC
May 2017