Publications by authors named "Caterina Ripa"

2 Publications

  • Page 1 of 1

Growth Forms and Functional Guilds Distribution of Soil Fungi in Coastal Versus Inland Sites of Victoria Land, Antarctica.

Biology (Basel) 2021 Apr 11;10(4). Epub 2021 Apr 11.

Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.

In Victoria Land, Antarctica, ice-free areas are restricted to coastal regions and dominate the landscape of the McMurdo Dry Valleys. These two environments are subjected to different pressures that determine the establishment of highly adapted fungal communities. Within the kingdom of fungi, filamentous, yeasts and meristematic/microcolonial growth forms on one side and different lifestyles on the other side may be considered adaptive strategies of particular interest in the frame of Antarctic constraints. In this optic, soil fungal communities from both coastal and Dry Valleys sites, already characterized thorough ITS1 metabarcoding sequencing, have been compared to determine the different distribution of phyla, growth forms, and lifestyles. Though we did not find significant differences in the richness between the two environments, the communities were highly differentiated and Dry Valleys sites had a higher evenness compared to coastal ones. Additionally, the distribution of different growth forms and lifestyles were well differentiated, and their diversity and composition were likely influenced by soil abiotic parameters, among which soil granulometry, pH, P, and C contents were the potential main determinants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biology10040320DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070035PMC
April 2021

Microbial activity in alpine soils under climate change.

Sci Total Environ 2021 Aug 10;783:147012. Epub 2021 Apr 10.

Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy. Electronic address:

Soil enzymatic activity was assessed in the Stelvio Pass area (Italian Central Alps) aiming to define the possible effects of climate change on microbial functioning. Two sites at two different elevations were chosen, a subalpine (2239 m) and an alpine belt (2604-2624 m), with mean annual air temperature differing by almost 3 °C, coherent with the worst future warming scenario (RCP 8.5) by 2100. The lower altitude site may represent a proxy of the potential future situation at higher altitude after the upward shift of subalpine vegetation due to climate change. Additionally, hexagonal open top chambers (OTCs) were installed at the upper site, to passively increase by about 2 °C the summer inner temperature to simulate short term effects of warming before the vegetation shift takes place. Soil physicochemical properties and the bacterial and fungal abundances of the above samples were also considered. The subalpine soils showed a higher microbial activity, especially for hydrolytic enzymes, higher carbon, ammonium and hydrogen (p < 0.001) contents, and a slightly higher PO content (p < 0.05) than alpine soils. Bacterial abundance was higher than fungal abundance, both for alpine and subalpine soils. On the other hand, the short term effect, which increased the mean soil temperature during the peak of the growing season in the OTC, showed to induce scarcely significant differences for edaphic parameters and microbial biomass content among the warmed and control plots. Using the manipulative warming experiments, we demonstrated that warming is able to change the enzyme activity starting from colder and higher altitude sites, known to be more vulnerable to the rising temperatures associated with climate change. Although five-years of experimental warming does not allow us to make bold conclusions, it appeared that warming-induced upwards vegetation shift might induce more substantial changes in enzymatic activities than the short-term effects, in the present vegetation context.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.147012DOI Listing
August 2021
-->