Publications by authors named "Caterina Barbieri"

25 Publications

  • Page 1 of 1

Genetic insights into biological mechanisms governing human ovarian ageing.

Nature 2021 08 4;596(7872):393-397. Epub 2021 Aug 4.

Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.

Reproductive longevity is essential for fertility and influences healthy ageing in women, but insights into its underlying biological mechanisms and treatments to preserve it are limited. Here we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in about 200,000 women of European ancestry. These common alleles were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations. The identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR-associated genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increases fertility and extends reproductive life in mice. Causal inference analyses using the identified genetic variants indicate that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases the risk of hormone-sensitive cancers. These findings provide insight into the mechanisms that govern ovarian ageing, when they act, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03779-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611832PMC
August 2021

Natural human knockouts and Mendelian disorders: deep phenotyping in Italian isolates.

Eur J Hum Genet 2021 Aug 16;29(8):1272-1281. Epub 2021 Mar 16.

Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.

Whole genome sequencing (WGS) allows the identification of human knockouts (HKOs), individuals in whom loss of function (LoF) variants disrupt both alleles of a given gene. HKOs are a valuable model for understanding the consequences of genes function loss. Naturally occurring biallelic LoF variants tend to be significantly enriched in "genetic isolates," making these populations specifically suited for HKO studies. In this work, a meticulous WGS data analysis combined with an in-depth phenotypic assessment of 947 individuals from three Italian genetic isolates led to the identification of ten biallelic LoF variants in ten OMIM genes associated with known autosomal recessive diseases. Notably, only a minority of the identified HKOs (C7, F12, and GPR68 genes) displayed the expected phenotype. For most of the genes, instead, (ACADSB, FANCL, GRK1, LGI4, MPO, PGAM2, and RP1L1), the carriers showed none or few of the signs and symptoms typically associated with the related diseases. Of particular interest is a case presenting with a FANCL biallelic LoF variant and a positive diepoxybutane test but lacking a full Fanconi anemia phenotypic spectrum. Identifying KO subjects displaying expected phenotypes suggests that the lack of correct genetic diagnoses may lead to inappropriate and delayed treatment. In contrast, the presence of HKOs with phenotypes deviating from the expected patterns underlines how LoF variants may be responsible for broader phenotypic spectra. Overall, these results highlight the importance of in-depth phenotypical characterization to understand the role of LoF variants and the advantage of studying these variants in genetic isolates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-021-00850-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8384846PMC
August 2021

A bird's-eye view of Italian genomic variation through whole-genome sequencing.

Eur J Hum Genet 2020 04 29;28(4):435-444. Epub 2019 Nov 29.

Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy.

The genomic variation of the Italian peninsula populations is currently under characterised: the only Italian whole-genome reference is represented by the Tuscans from the 1000 Genome Project. To address this issue, we sequenced a total of 947 Italian samples from three different geographical areas. First, we defined a new Italian Genome Reference Panel (IGRP1.0) for imputation, which improved imputation accuracy, especially for rare variants, and we tested it by GWAS analysis on red blood traits. Furthermore, we extended the catalogue of genetic variation investigating the level of population structure, the pattern of natural selection, the distribution of deleterious variants and occurrence of human knockouts (HKOs). Overall the results demonstrate a high level of genomic differentiation between cohorts, different signatures of natural selection and a distinctive distribution of deleterious variants and HKOs, confirming the necessity of distinct genome references for the Italian population.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-019-0551-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080768PMC
April 2020

Loss of PRC1 activity in different stem cell compartments activates a common transcriptional program with cell type-dependent outcomes.

Sci Adv 2019 05 15;5(5):eaav1594. Epub 2019 May 15.

European Institute of Oncology-IRCCS, Department of Experimental Oncology, Milan, Italy.

Polycomb repressive complexes are evolutionarily conserved complexes that maintain transcriptional repression during development and differentiation to establish and preserve cell identity. We recently described the fundamental role of PRC1 in preserving intestinal stem cell identity through the inhibition of non-lineage-specific transcription factors. To further elucidate the role of PRC1 in adult stem cell maintenance, we now investigated its role in LGR5 hair follicle stem cells during regeneration. We show that PRC1 depletion severely affects hair regeneration and, different from intestinal stem cells, derepression of its targets induces the ectopic activation of an epidermal-specific program. Our data support a general role of PRC1 in preserving stem cell identity that is shared between different compartments. However, the final outcome of the ectopic activation of non-lineage-specific transcription factors observed upon loss of PRC1 is largely context-dependent and likely related to the transcription factors repertoire and specific epigenetic landscape of different cellular compartments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.aav1594DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520019PMC
May 2019

Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity.

Nat Commun 2019 04 11;10(1):1679. Epub 2019 Apr 11.

IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139, Milan, Italy.

The Polycomb repressive complexes PRC1 and PRC2 act non-redundantly at target genes to maintain transcriptional programs and ensure cellular identity. PRC2 methylates lysine 27 on histone H3 (H3K27me), while PRC1 mono-ubiquitinates histone H2A at lysine 119 (H2Aub1). Here we present engineered mouse embryonic stem cells (ESCs) targeting the PRC2 subunits EZH1 and EZH2 to discriminate between contributions of distinct H3K27 methylation states and the presence of PRC2/1 at chromatin. We generate catalytically inactive EZH2 mutant ESCs, demonstrating that H3K27 methylation, but not recruitment to the chromatin, is essential for proper ESC differentiation. We further show that EZH1 activity is sufficient to maintain repression of Polycomb targets by depositing H3K27me2/3 and preserving PRC1 recruitment. This occurs in the presence of altered H3K27me1 deposition at actively transcribed genes and by a diffused hyperacetylation of chromatin that compromises ESC developmental potential. Overall, this work provides insights for the contribution of diffuse chromatin invasion by acetyltransferases in PRC2-dependent loss of developmental control.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-09624-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459869PMC
April 2019

Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation.

Nat Commun 2018 10 26;9(1):4455. Epub 2018 Oct 26.

Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA.

Thyroid dysfunction is an important public health problem, which affects 10% of the general population and increases the risk of cardiovascular morbidity and mortality. Many aspects of thyroid hormone regulation have only partly been elucidated, including its transport, metabolism, and genetic determinants. Here we report a large meta-analysis of genome-wide association studies for thyroid function and dysfunction, testing 8 million genetic variants in up to 72,167 individuals. One-hundred-and-nine independent genetic variants are associated with these traits. A genetic risk score, calculated to assess their combined effects on clinical end points, shows significant associations with increased risk of both overt (Graves' disease) and subclinical thyroid disease, as well as clinical complications. By functional follow-up on selected signals, we identify a novel thyroid hormone transporter (SLC17A4) and a metabolizing enzyme (AADAT). Together, these results provide new knowledge about thyroid hormone physiology and disease, opening new possibilities for therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-06356-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203810PMC
October 2018

Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.

Nat Genet 2018 10 17;50(10):1412-1425. Epub 2018 Sep 17.

Laboratory of Genetics and Genomics, NIA/NIH, Baltimore, MD, USA.

High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0205-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284793PMC
October 2018

Patterns of Fertility Preservation and Pregnancy Outcome After Breast Cancer at a Large Comprehensive Cancer Center.

J Womens Health (Larchmt) 2019 04 2;28(4):544-550. Epub 2018 Jul 2.

1 Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.

Background: In the last decades, long-term outcomes of breast cancer (BC) patients have improved, raising new survivorship issues, including fertility preservation and safety of pregnancy after BC. This study assesses evolution in patterns of fertility discussion/preservation over time and reports pregnancy outcomes in a cohort of young BC patients.

Methods: A retrospective cohort of 590 BC patients aged ≤40 diagnosed between 2000 and 2016 at a large cancer center was identified. Fertility counseling and preservation patterns for patients receiving chemotherapy were analyzed and compared for two cohorts: 2004-2006 and 2014-2016 (total n = 161). Outcomes were reported for patients with documented pregnancy after BC.

Results: Significantly, more patients diagnosed in 2014-2016 had evidence of discussion on fertility issues and/or application of fertility preservation techniques versus patients diagnosed in 2004-2006 (82.9% vs. 66.0%, p = 0.017). In particular, there was a significant difference in rate of documented fertility issues discussion (67.6% vs. 34.0%, p < 0.001). Age >35 and parity were associated with lower rates of fertility discussion/preservation. However, rates significantly improved over time (77.6% in 2014-2016 vs. 58.1% in 2004-2006 for patients aged >35, p = 0.046; 80.7% in 2014-2016 vs. 57.6% in 2004-2006 for patients with children at diagnosis, p = 0.018). Twenty-six patients with pregnancy after BC were identified; eight delivered at the age of >40. No complications for women or newborns were reported. Only two patients experienced BC relapse.

Conclusions: In this small retrospective cohort, no safety concerns were identified for pregnancy after BC. The importance attributed by clinicians to address fertility issues has increased over time.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/jwh.2018.6986DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6482901PMC
April 2019

Fertility Preservation in Endometriosis Patients: Anti-Müllerian Hormone Is a Reliable Marker of the Ovarian Follicle Density.

Front Surg 2017 25;4:40. Epub 2017 Jul 25.

Genetics of Common Disorders, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.

Objective: To analyze the ovarian reserve measurement of follicular density and anti-Müllerian hormone (AMH) in endometriosis patients participating to a clinical program of cortical ovarian cryopreservation.

Design: Retrospective analysis of serum AMH levels and prospective investigation of ovarian follicle number.

Setting: University Hospital.

Patients: Two hundred and two women with endometriosis and 400 controls.

Interventions: Blood samples and ovarian biopsies.

Main Outcome Measures: Correlation of serum AMH levels and the number of non-growing follicles in the biopsied cortical tissues in endometriosis and control subjects, including age, type of AMH kit, and the laboratory performing the analysis as covariates.

Results: AMH levels were shown to decrease with age in untreated endometriosis patients ( < 1.0 × 10) but they were significantly lower in endometriosis compared to controls only in patients over 36 years old ( = 2.7 × 10). The AMH decrease was faster in endometriosis compared to controls (beta = 0.27,  = 4.0 × 10). Primordial follicle number decreased with the reduction of AMH levels in both cases and controls (beta = 0.3;  = 0.04).

Conclusion: AMH is a reliable marker of ovarian reserve in endometriosis patients, and it can predict follicular density in women undergoing ovarian tissue cryopreservation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fsurg.2017.00040DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5524724PMC
July 2017

Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.

Hypertension 2017 Jul 24. Epub 2017 Jul 24.

From the Department of Health Sciences (L.V.W., A.M.E., N. Shrine, C.B., T.B., M.D.T.), and Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre (C.P.N., P.S.B., N.J.S.), University of Leicester, United Kingdom; Department of Epidemiology (A.V., P.J.v.d.M., I.M.N., H. Snieder), Division of Nephrology, Department of Internal Medicine (M.H.d.B., M.A.S.), Interdisciplinary Center Psychopathology and Emotion Regulation (IPCE) (A.J.O., H.R., C.A.H.), Department of Genetics, (M.S.), and Department of Cardiology (P.v.d.H.), University of Groningen, University Medical Center Groningen, The Netherlands; Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Iran (A.V.); Department of Psychiatry, VU University Medical Center, Neuroscience Campus Amsterdam, The Netherlands (R. Jansen); Hebrew SeniorLife, Harvard Medical School, Boston, MA (R. Joehanes); National Heart, Lung and Blood Institute's Framingham Heart Study, MA (R. Joehanes, A.D.J., M. Larson); Institute of Psychiatry, Psychology and Neuroscience (P.F.O.), and Department of Twin Research and Genetic Epidemiology (M.M., C. Menni, T.D.S.), King's College London, United Kingdom; Clinical Pharmacology, William Harvey Research Institute (C.P.C., H.R.W., M.R.B., M. Brown, B.M., M.R., P.B.M., M.J.C.) and NIHR Barts Cardiovascular Biomedical Research Unit (C.P.C., H.R.W., M.R.B., M. Brown, P.B.M., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA (L.M.R., F.G., P.M.R., D.I.C.); Department of Epidemiology (G.C.V., A. Hofman, A.G.U., O.H.F.), Genetic Epidemiology Unit, Department of Epidemiology (N.A., B.A.O., C.M.v.D.), and Department of Internal Medicine (A.G.U.), Erasmus MC, Rotterdam, The Netherlands; Department of Biological Psychology, Vrije Universiteit, Amsterdam, EMGO+ Institute, VU University Medical Center, The Netherlands (J.-J.H., E.J.d.G., G.W., D.I.B.); Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (R.J.S., M. Frånberg, A. Hamsten); Centre for Molecular Medicine, Karolinska Universitetsjukhuset, Solna, Sweden (R.J.S., M. Frånberg, A. Hamsten); Estonian Genome Center (T.E., E.O., A. Metspalu), Institute of Biomedicine and Translational Medicine (S.S., M. Laan), and Estonian Genome Center (M.P.), University of Tartu, Estonia; Divisions of Endocrinology/Children's Hospital, Boston, MA (T.E.); Broad Institute of Harvard and MIT, Cambridge, MA (T.E., C.M.L., C.N.-C.); Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (D.E.A., P.N., A. Chakravarti, G.B.E.); The Population Science Branch, Division of Intramural Research, National Heart Lung and Blood Institute (S.-J.H., D.L.), Laboratory of Neurogenetics, National Institute on Aging (M.A.N.), Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute (F.C.), and Center for Information Technology (Y.D., P.J.M., Q.T.N.), National Institutes of Health, Bethesda, MD; The Framingham Heart Study, Framingham, MA (S.-J.H., D.L.); The Institute for Translational Genomics and Population Sciences, Department of Pediatrics (X.G., J.Y.), and The Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine (J.I.R.), LABioMed at Harbor-UCLA Medical Center, Torrance, CA; Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland (Z.K., M. Bochud); Swiss Institute of Bioinformatics, Lausanne, Switzerland (Z.K.); Department of Cardiology (S. Trompet, J.W.J.) Department of Gerontology and Geriatrics (S. Trompet), Department of Clinical Epidemiology (R.L.-G., R.d.M., D.O.M.-K.), Department of Molecular Epidemiology (J.D.), and Department of Public Health and Primary Care (D.O.M.-K.), Leiden University Medical Center, The Netherlands; Institute for Community Medicine (A.T.), Department of Internal Medicine B (M.D.), and Interfaculty Institute for Genetics and Functional Genomics (U.V.), University Medicine Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany (A.T., M.D., U.V.); Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany (J.S.R., A. Peters); Cardiovascular Health Research Unit, Department of Medicine (J.C.B., B.M.P.) and Departments of Biostatistics (K.R.), Epidemiology (B.M.P.), and Health Services (B.M.P.), University of Washington, Seattle; Icelandic Heart Association, Kopavogur, Iceland (A.V.S., V. Gudnason); Faculty of Medicine, University of Iceland, Reykjavik, Iceland (A.V.S., V. Gudnason); Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland (L.-P.L., T.L.); Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, University of Tampere, Finland (L.-P.L., T.L.); Wellcome Trust Centre for Human Genetics (A. Mahajan, A.G., M. Farrall, T.F., C.M.L., H.W., A.P.M.), and Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.G., M. Farrall, H.W.), University of Oxford, United Kingdom; MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, United Kingdom (N.J.W., J.L., C.L., R.J.F.L., R.A.S., J.H.Z.); Clinical Division of Neurogeriatrics, Department of Neurology (E.H., R. Schmidt), Institute of Medical Informatics, Statistics and Documentation (E.H.), and Department of Neurology (H. Schmidt), Medical University Graz, Austria; Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics (P.K.J., H.C., I.R., S.W., J.F.W.), Centre for Cognitive Ageing and Cognitive Epidemiology (L.M.L., S.E.H., G.D., A.J.G., D.C.M.L., J.M.S., I.J.D.), Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine (A. Campbell), Generation Scotland, Centre for Genomic and Experimental Medicine (A. Campbell, S.P., C.H.), Department of Psychology (G.D., D.C.M.L., A. Pattie, I.J.D.), Alzheimer Scotland Dementia Research Centre (J.M.S.), and Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine (C.H.), University of Edinburgh, Scotland, United Kingdom; Department of Health (K.K., A.S.H., T. Niiranen, P.J., A.J., S. Koskinen, P.K., V.S., M.P.), and Chronic Disease Prevention Unit (J.T.), National Institute for Health and Welfare (THL), Helsinki, Finland; Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy (M.T., C.M.B., C.F.S., D.T.); Data Tecnica International, Glen Echo, MD (M.A.N.); Medical Genetics, IRCCS-Burlo Garofolo Children Hospital, Trieste, Italy (D.V., G.G., P.G.); Department of Medical, Surgical and Health Sciences, University of Trieste, Italy (D.V., I.G., M. Brumat, M. Cocca, A. Morgan, G.G., P.G.); Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy (F.D.G.M., P.P.P., A.S.P., A.A.H.); Department of Genetics and Genomic Sciences (K.L.A.), The Charles Bronfman Institute for Personalized Medicine (Y.L., E.P.B., R.J.F.L.), and Mindich Child health Development Institute (R.J.F.L.), Icahn School of Medicine at Mount Sinai, New York; Cardiovascular Epidemiology and Genetics, IMIM, and CIBERCV, Barcelona, Spain (J. Marrugat, R.E.); Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Napoli, Italy (D.R., T. Nutile, R. Sorice, M. Ciullo); Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin (L.M.L.); UCD Conway Institute, Centre for Proteome Research (L.M.L.), and School of Medicine, Conway Institute (D.C.S.), University College Dublin, Belfield, Ireland; Department of Immunology, Genetics and Pathology, Uppsala Universitet, Science for Life Laboratory, Sweden (S.E., Å. Johansson, U.G.); Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor (A.U.J., M. Boehnke); NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester United Kingdom (C.P.N., P.S.B., N.J.S.); MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (J.E.H., V.V., J. Marten, A.F.W., J.F.W.), and Medical Genetics Section, Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine (S.E.H.), University of Edinburgh, Western General Hospital, Scotland, United Kingdom; Department of Epidemiology and Biostatistics, School of Public Health (W.Z., E.E., J.C.C., H.G., B.L., I.T., A.-C.V.), MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health (M.-R.J., P.E.), School of Public Health (N.P.), International Centre for Circulatory Health (S. Thom), and National Heart and Lung Institute (P.S.), Imperial College London, United Kingdom; Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Southall, United Kingdom (W.Z., J.C.C., J.S.K.); Department of Medical Biology, Faculty of Medicine, University of Split, Croatia (T.Z.); Department of Hygiene and Epidemiology, University of Ioannina Medical School, Greece (E.E.); Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Scotland, United Kingdom (N. Shah, A.S.F.D., C.N.A.P.); Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan (N. Shah); National Institute for Health Research Biomedical Research Centre, London, United Kingdom (M.M.); Department of Human Genetics, Wellcome Trust Sanger Institute, United Kingdom (B.P.P., E.Z.); INSERM U 1219, Bordeaux Population Health Center, France (G.C., C.T., S.D.); Bordeaux University, France (G.C., C.T., S.D.); Hunter Medical Research Institute, New Lambton, NSW, Australia (C.O., E.G.H., R. Scott, J.A.); Center for Statistical Genetics, Department of Biostatistics, Ann Arbor, MI (G.A.); Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Iran (M.A.); Busselton Population Medical Research Institute, Western Australia (J.B., J.H.); PathWest Laboratory Medicine of Western Australia, Nedlands (J.B., J.H.); School of Pathology and Laboratory Medicine (J.B., J.H.), School of Population and Global Health (J.H.), and School of Medicine and Pharmacology (A. James), The University of Western Australia, Nedlands; Imperial College Healthcare NHS Trust, London, United Kingdom (J.C.C., J.S.K.); University of Dundee, Ninewells Hospital & Medical School, United Kingdom (J.C.); Institute of Genetic Medicine (H.J.C.), and Institute of Health and Society (C. Mamasoula), Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Pathology, Amsterdam Medical Center, The Netherlands (J.J.D.); Department of Numerical Analysis and Computer Science, Stockholm University, Sweden (M. Frånberg); Department of Public Health and Caring Sciences, Geriatrics, Uppsala, Sweden (V. Giedraitis); Helmholtz Zentrum Muenchen, Deutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH), Neuherberg, Germany (C.G.); Department of Psychology, School of Social Sciences, Heriot-Watt University, Edinburgh, United Kingdom (A.J.G.); Intramural Research Program, Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging (T.B.H., L.J.L.); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (A. Hofman); Center For Life-Course Health Research (M.-R.J.), and Biocenter Oulu (M.-R.J.), University of Oulu, Finland; Unit of Primary Care, Oulu University Hospital, Finland (M.-R.J.); National Heart, Lung and Blood Institute, Cardiovascular Epidemiology and Human Genomics Branch, Bethesda, MD (A.D.J.); Department of Clinical Physiology, Tampere University Hospital, Finland (M.K.); Department of Clinical Physiology, Faculty of Medicine and Life Sciences, University of Tampere, Finland (M.K.); Cardiovascular Research Center (S. Kathiresan, C.N.-C.); Center for Human Genetics (S. Kathiresan), and Center for Human Genetic Research (C.N.-C.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA (S. Kathiresan, C.N.-C.); Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, United Kingdom (K.-T.K.); Department of Public Health, Faculty of Medicine, University of Split, Croatia (I.K., O.P.); Cardiology, Department of Specialties of Medicine, Geneva University Hospital, Switzerland (L. Lin, F.M., G.B.E.); Department of Medical Sciences, Cardiovascular Epidemiology (L. Lind, J.S.), and Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory (E.I.), Uppsala University, Sweden; Department of Psychiatry, EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands (Y.M., B.W.J.H.P.); School of Molecular, Genetic and Population Health Sciences, University of Edinburgh, Medical School, Teviot Place, Scotland, United Kingdom (A.D.M.); Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston (A.C.M.); British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences (S.P.), and Institute of Cardiovascular and Medical Sciences, Faculty of Medicine (D.J.S.), University of Glasgow, United Kingdom; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland (A. Palotie, S.R., A.-P.S., M.P.); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada (G.P., S. Thériault); Department of Neurology, General Central Hospital, Bolzano, Italy (P.P.P.); Department of Neurology, University of Lübeck, Germany (P.P.P.); Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Finland (O.T.R.); Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Finland (O.T.R.); Department of Cardiology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China (M.R.); Harvard Medical School, Boston, MA (P.M.R., D.I.C.); Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy (A.R.); Institute of Molecular Biology and Biochemistry, Centre for Molecular Medicine, Medical University of Graz, Austria (Y.S., H. Schmidt); INSERM U1078, Etablissement Français du Sang, Brest Cedex, France (A.S.P.); Faculty of Health, University of Newcastle, Callaghan, NSW, Australia (R. Scott, J.A.); John Hunter Hospital, New Lambton, NSW, Australia (R. Scott, J.A.); The New York Academy of Medicine, New York (D.S.); IRCCS Neuromed, Pozzilli, Isernia, Italy (R. Sorice, M. Ciullo); Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland (A.S.); Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (K.D.T.); Division of Genetic Outcomes, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA (K.D.T.); Department of Public Health (C.T.), and Department of Neurology (S.D.), Bordeaux University Hospital, France; Department of Internal Medicine, Lausanne University Hospital, CHUV, Switzerland (P.V.); Population Health Research Institute, McMaster University, Hamilton Ontario, Canada (D.C.); National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, United Kingdom (J.S.K.); Dasman Diabetes Institute, Kuwait (J.T.); Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia (J.T.); Department of Neurosciences and Preventive Medicine, Danube-University Krems, Austria (J.T.); Division of Cardiovascular Sciences, The University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, United Kingdom (B.D.K.); Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem (Y.M.L.); Kaiser Permanent Washington Health Research Institute, Seattle, WA (B.M.P.); Institute of Physiology, University Medicine Greifswald, Karlsburg, Germany (R.R); Department of Pulmonary Physiology and Sleep, Sir Charles Gairdner Hospital, Nedlands, Western Australia (A. James); Population Health Research Institute, St George's, University of London, United Kingdom (D.P.S.); Department of Medicine, Columbia University Medical Center, New York (W.P.); Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, CA (E.I.); Data Science Institute and Lancaster Medical School, Lancaster University, United Kingdom (J.K.); and Department of Biostatistics, University of Liverpool, United Kingdom (A.P.M.).

Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near , , , , , and , and provide new replication evidence for a further 2 signals in and Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09438DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5783787PMC
July 2017

Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk.

Nat Genet 2017 Jun 24;49(6):834-841. Epub 2017 Apr 24.

Institute of Genetics and Biophysics, CNR, Naples, Italy.

The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Using 1000 Genomes Project-imputed genotype data in up to ∼370,000 women, we identify 389 independent signals (P < 5 × 10) for age at menarche, a milestone in female pubertal development. In Icelandic data, these signals explain ∼7.4% of the population variance in age at menarche, corresponding to ∼25% of the estimated heritability. We implicate ∼250 genes via coding variation or associated expression, demonstrating significant enrichment in neural tissues. Rare variants near the imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects when paternally inherited. Mendelian randomization analyses suggest causal inverse associations, independent of body mass index (BMI), between puberty timing and risks for breast and endometrial cancers in women and prostate cancer in men. In aggregate, our findings highlight the complexity of the genetic regulation of puberty timing and support causal links with cancer susceptibility.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3841DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841952PMC
June 2017

KLB is associated with alcohol drinking, and its gene product β-Klotho is necessary for FGF21 regulation of alcohol preference.

Proc Natl Acad Sci U S A 2016 12 28;113(50):14372-14377. Epub 2016 Nov 28.

Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, United Kingdom.

Excessive alcohol consumption is a major public health problem worldwide. Although drinking habits are known to be inherited, few genes have been identified that are robustly linked to alcohol drinking. We conducted a genome-wide association metaanalysis and replication study among >105,000 individuals of European ancestry and identified β-Klotho (KLB) as a locus associated with alcohol consumption (rs11940694; P = 9.2 × 10). β-Klotho is an obligate coreceptor for the hormone FGF21, which is secreted from the liver and implicated in macronutrient preference in humans. We show that brain-specific β-Klotho KO mice have an increased alcohol preference and that FGF21 inhibits alcohol drinking by acting on the brain. These data suggest that a liver-brain endocrine axis may play an important role in the regulation of alcohol drinking behavior and provide a unique pharmacologic target for reducing alcohol consumption.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1611243113DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167198PMC
December 2016

Meta-GWAS and Meta-Analysis of Exome Array Studies Do Not Reveal Genetic Determinants of Serum Hepcidin.

PLoS One 2016 15;11(11):e0166628. Epub 2016 Nov 15.

Radboud university medical center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.

Serum hepcidin concentration is regulated by iron status, inflammation, erythropoiesis and numerous other factors, but underlying processes are incompletely understood. We studied the association of common and rare single nucleotide variants (SNVs) with serum hepcidin in one Italian study and two large Dutch population-based studies. We genotyped common SNVs with genome-wide association study (GWAS) arrays and subsequently performed imputation using the 1000 Genomes reference panel. Cohort-specific GWAS were performed for log-transformed serum hepcidin, adjusted for age and gender, and results were combined in a fixed-effects meta-analysis (total N 6,096). Six top SNVs (p<5x10-6) were genotyped in 3,821 additional samples, but associations were not replicated. Furthermore, we meta-analyzed cohort-specific exome array association results of rare SNVs with serum hepcidin that were available for two of the three cohorts (total N 3,226), but no exome-wide significant signal (p<1.4x10-6) was identified. Gene-based meta-analyses revealed 19 genes that showed significant association with hepcidin. Our results suggest the absence of common SNVs and rare exonic SNVs explaining a large proportion of phenotypic variation in serum hepcidin. We recommend extension of our study once additional substantial cohorts with hepcidin measurements, GWAS and/or exome array data become available in order to increase power to identify variants that explain a smaller proportion of hepcidin variation. In addition, we encourage follow-up of the potentially interesting genes that resulted from the gene-based analysis of low-frequency and rare variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166628PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112847PMC
June 2017

MCM8 and MCM9 Nucleotide Variants in Women With Primary Ovarian Insufficiency.

J Clin Endocrinol Metab 2017 02;102(2):576-582

Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.

Objective: To assess the frequency of variants, including biallelic pathogenic variants, in minichromosome maintenance 8 (MCM8) and minichromosome maintenance 9 (MCM9), other genes related to MCM8-MCM9, and DNA damage repair (DDR) pathway in participants with primary ovarian insufficiency (POI).

Design: MCM8, MCM9, and genes encoding DDR proteins that have been implicated in reproductive aging were sequenced among POI participants.

Setting: Academic research institution.

Participants: All were diagnosed with POI prior to age 40 years and presented with elevated follicle-stimulating hormone levels.

Interventions: None.

Main Outcome Measures: We identified nucleotide variants in MCM8, MCM9, and genes thought to be involved in the DNA damage response pathway and/or implicated in reproductive aging.

Results: MCM8 was sequenced in 155 POI participants, whereas MCM9 was sequenced in 151 participants. Three of 155 (2%) participants carried possibly damaging heterozygous variants in MCM8, whereas 7 of 151 (5%) individuals carried possibly damaging heterozygous variants in MCM9. One participant carried a novel homozygous variant, c.1651C>T, p.Gln551*, in MCM9, which is predicted to introduce a premature stop codon in exon 9. Biallelic damaging heterozygous variants in both MCM8 and MCM9 were identified in 1 participant. Of a total of 10 participants carrying damaging heterozygous variants in either MCM8 or MCM9, 2 individuals carried heterozygous damaging variants in genes associated with either MCM8 or MCM9 or the DDR pathway.

Conclusions: We identified a significant number of potentially damaging and novel variants in MCM8 and MCM9 among participants with POI and examined multiallelic association with variants in DDR and MCM8-MCM9 interactome genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2016-2565DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413161PMC
February 2017

Genome-wide analysis identifies 12 loci influencing human reproductive behavior.

Nat Genet 2016 12 31;48(12):1462-1472. Epub 2016 Oct 31.

Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands.

The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3698DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695684PMC
December 2016

Discovery and refinement of genetic loci associated with cardiometabolic risk using dense imputation maps.

Nat Genet 2016 11 26;48(11):1303-1312. Epub 2016 Sep 26.

Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.

Large-scale whole-genome sequence data sets offer novel opportunities to identify genetic variation underlying human traits. Here we apply genotype imputation based on whole-genome sequence data from the UK10K and 1000 Genomes Project into 35,981 study participants of European ancestry, followed by association analysis with 20 quantitative cardiometabolic and hematological traits. We describe 17 new associations, including 6 rare (minor allele frequency (MAF) < 1%) or low-frequency (1% < MAF < 5%) variants with platelet count (PLT), red blood cell indices (MCH and MCV) and HDL cholesterol. Applying fine-mapping analysis to 233 known and new loci associated with the 20 traits, we resolve the associations of 59 loci to credible sets of 20 or fewer variants and describe trait enrichments within regions of predicted regulatory function. These findings improve understanding of the allelic architecture of risk factors for cardiometabolic and hematological diseases and provide additional functional insights with the identification of potentially novel biological targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3668DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5279872PMC
November 2016

Six Novel Loci Associated with Circulating VEGF Levels Identified by a Meta-analysis of Genome-Wide Association Studies.

PLoS Genet 2016 Feb 24;12(2):e1005874. Epub 2016 Feb 24.

UMR INSERM U1122, IGE-PCV "Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire", Faculté de Pharmacie, Université de Lorraine, Nancy, France.

Vascular endothelial growth factor (VEGF) is an angiogenic and neurotrophic factor, secreted by endothelial cells, known to impact various physiological and disease processes from cancer to cardiovascular disease and to be pharmacologically modifiable. We sought to identify novel loci associated with circulating VEGF levels through a genome-wide association meta-analysis combining data from European-ancestry individuals and using a dense variant map from 1000 genomes imputation panel. Six discovery cohorts including 13,312 samples were analyzed, followed by in-silico and de-novo replication studies including an additional 2,800 individuals. A total of 10 genome-wide significant variants were identified at 7 loci. Four were novel loci (5q14.3, 10q21.3, 16q24.2 and 18q22.3) and the leading variants at these loci were rs114694170 (MEF2C, P = 6.79 x 10(-13)), rs74506613 (JMJD1C, P = 1.17 x 10(-19)), rs4782371 (ZFPM1, P = 1.59 x 10(-9)) and rs2639990 (ZADH2, P = 1.72 x 10(-8)), respectively. We also identified two new independent variants (rs34528081, VEGFA, P = 1.52 x 10(-18); rs7043199, VLDLR-AS1, P = 5.12 x 10(-14)) at the 3 previously identified loci and strengthened the evidence for the four previously identified SNPs (rs6921438, LOC100132354, P = 7.39 x 10(-1467); rs1740073, C6orf223, P = 2.34 x 10(-17); rs6993770, ZFPM2, P = 2.44 x 10(-60); rs2375981, KCNV2, P = 1.48 x 10(-100)). These variants collectively explained up to 52% of the VEGF phenotypic variance. We explored biological links between genes in the associated loci using Ingenuity Pathway Analysis that emphasized their roles in embryonic development and function. Gene set enrichment analysis identified the ERK5 pathway as enriched in genes containing VEGF associated variants. eQTL analysis showed, in three of the identified regions, variants acting as both cis and trans eQTLs for multiple genes. Most of these genes, as well as some of those in the associated loci, were involved in platelet biogenesis and functionality, suggesting the importance of this process in regulation of VEGF levels. This work also provided new insights into the involvement of genes implicated in various angiogenesis related pathologies in determining circulating VEGF levels. The understanding of the molecular mechanisms by which the identified genes affect circulating VEGF levels could be important in the development of novel VEGF-related therapies for such diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1005874DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766012PMC
February 2016

Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair.

Nat Genet 2015 Nov 28;47(11):1294-1303. Epub 2015 Sep 28.

Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", 34137 Trieste, Italy.

Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (∼6% increase in risk per year; P = 3 × 10(-14)), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3412DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661791PMC
November 2015

Rare coding variants and X-linked loci associated with age at menarche.

Nat Commun 2015 Aug 4;6:7756. Epub 2015 Aug 4.

Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

More than 100 loci have been identified for age at menarche by genome-wide association studies; however, collectively these explain only ∼3% of the trait variance. Here we test two overlooked sources of variation in 192,974 European ancestry women: low-frequency protein-coding variants and X-chromosome variants. Five missense/nonsense variants (in ALMS1/LAMB2/TNRC6A/TACR3/PRKAG1) are associated with age at menarche (minor allele frequencies 0.08-4.6%; effect sizes 0.08-1.25 years per allele; P<5 × 10(-8)). In addition, we identify common X-chromosome loci at IGSF1 (rs762080, P=9.4 × 10(-13)) and FAAH2 (rs5914101, P=4.9 × 10(-10)). Highlighted genes implicate cellular energy homeostasis, post-transcriptional gene silencing and fatty-acid amide signalling. A frequently reported mutation in TACR3 for idiopathic hypogonatrophic hypogonadism (p.W275X) is associated with 1.25-year-later menarche (P=2.8 × 10(-11)), illustrating the utility of population studies to estimate the penetrance of reportedly pathogenic mutations. Collectively, these novel variants explain ∼0.5% variance, indicating that these overlooked sources of variation do not substantially explain the 'missing heritability' of this complex trait.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms8756DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538850PMC
August 2015

Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility.

Nat Commun 2015 Jan 29;6:5897. Epub 2015 Jan 29.

1] The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2] The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.

Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=-0.09±0.01 mmol l(-1), P=3.4 × 10(-12)), T2D risk (OR[95%CI]=0.86[0.76-0.96], P=0.010), early insulin secretion (β=-0.07±0.035 pmolinsulin mmolglucose(-1), P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l(-1), P=4.3 × 10(-4)). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l(-1), P=1.3 × 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms6897DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4311266PMC
January 2015

Aberrant somatic hypermutation in transformation of follicular lymphoma and chronic lymphocytic leukemia to diffuse large B-cell lymphoma.

Haematologica 2006 Oct;91(10):1405-9

Division of Hematology, Department of Clinical and Experimental Medicine & IRCAD, Amedeo Avogadro University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.

The molecular mechanisms involved in histologic transformation of follicular lymphoma (FL) and B-chronic lymphocytic leukemia (B-CLL) to diffuse large B-cell lymphoma (DLBCL) are heterogeneous and largely unknown. Here we explored whether aberrant somatic hypermutation, leading to the acquisition of new mutations in PIM-1, PAX-5, RhoH/TTF and c-MYC genes, is involved in transformation from FL or B-CLL to DLBCL. Eighteen sequential pairs of FL/DLBCL (n=9) and B-CLL/DLBCL (n=9) were investigated. Our findings demonstrate that acquisition of novel mutations due to aberrant somatic hypermutation was associated with DLBCL transformation in 5/9 (55.5%) cases of FL and 2/9 (22.2%) cases of B-CLL.
View Article and Find Full Text PDF

Download full-text PDF

Source
October 2006

Usefulness of JAK2V617F mutation in distinguishing idiopathic erythrocytosis from polycythemia vera.

Leuk Res 2007 Jan 18;31(1):97-101. Epub 2006 Apr 18.

Division of Haematology, Department of Clinical and Experimental Medicine & IRCAD, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy.

Idiopathic erythrocytosis (IE) is a primary erythrocytosis not fulfilling the criteria for polycythemia vera (PV) diagnosis. In order to verify the relationship between IE and PV, we screened JAK2V617F mutation in a consecutive series of 11 IE and, for comparison, in 15 PV. JAK2V617F mutation was screened by both cDNA sequencing and mutation specific PCR in both peripheral blood and bone marrow samples. All 11 IE tested negative for JAK2V617F mutation, which, conversely, occurred in 11/15 (73.3%) PV. Our results demonstrate that JAK2V617F is absent in IE and may represent a useful molecular marker for distinguishing IE from PV.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.leukres.2006.02.027DOI Listing
January 2007
-->