Publications by authors named "Cas J Fuchs"

15 Publications

  • Page 1 of 1

Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis in vivo in humans: a double-blind randomized trial.

Am J Clin Nutr 2021 09;114(3):934-944

Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.

Background: Insects have recently been identified as a more sustainable protein-dense food source and may represent a viable alternative to conventional animal-derived proteins.

Objectives: We aimed to compare the impacts of ingesting lesser mealworm- and milk-derived protein on protein digestion and amino acid absorption kinetics, postprandial skeletal muscle protein synthesis rates, and the incorporation of dietary protein-derived amino acids into de novo muscle protein at rest and during recovery from exercise in vivo in humans.

Methods: In this double-blind randomized controlled trial, 24 healthy, young men ingested 30 g specifically produced, intrinsically l-[1-13C]-phenylalanine and l-[1-13C]-leucine labeled lesser mealworm- or milk-derived protein after a unilateral bout of resistance-type exercise. Primed continuous l-[ring-2H5]-phenylalanine, l-[ring-3,5-2H2]-tyrosine, and l-[1-13C]-leucine infusions were applied, with frequent collection of blood and muscle tissue samples.

Results: A total of 73% ± 7% and 77% ± 7% of the lesser mealworm and milk protein-derived phenylalanine was released into the circulation during the 5 h postprandial period, respectively, with no significant differences between groups (P < 0.05). Muscle protein synthesis rates increased after both lesser mealworm and milk protein concentrate ingestion from 0.025 ± 0.008%/h to 0.045 ± 0.017%/h and 0.028 ± 0.010%/h to 0.056 ± 0.012%/h at rest and from 0.025 ± 0.012%/h to 0.059 ± 0.015%/h and 0.026 ± 0.009%/h to 0.073 ± 0.020%/h after exercise, respectively (all P < 0.05), with no differences between groups (both P > 0.05). Incorporation of mealworm and milk protein-derived l-[1-13C]-phenylalanine into de novo muscle protein was greater after exercise than at rest (P < 0.05), with no differences between groups (P > 0.05).

Conclusions: Ingestion of a meal-like amount of lesser mealworm-derived protein is followed by rapid protein digestion and amino acid absorption and increases muscle protein synthesis rates both at rest and during recovery from exercise. The postprandial protein handling of lesser mealworm does not differ from ingesting an equivalent amount of milk protein concentrate in vivo in humans.This trial was registered at www.trialregister.nl as NL6897.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/nqab115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408844PMC
September 2021

Primary, Secondary, and Tertiary Effects of Carbohydrate Ingestion During Exercise.

Sports Med 2020 11;50(11):1863-1871

School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UK.

The purpose of this current opinion paper is to describe the journey of ingested carbohydrate from 'mouth to mitochondria' culminating in energy production in skeletal muscles during exercise. This journey is conveniently described as primary, secondary, and tertiary events. The primary stage is detection of ingested carbohydrate by receptors in the oral cavity and on the tongue that activate reward and other centers in the brain leading to insulin secretion. After digestion, the secondary stage is the transport of monosaccharides from the small intestine into the systemic circulation. The passage of these monosaccharides is facilitated by the presence of various transport proteins. The intestinal mucosa has carbohydrate sensors that stimulate the release of two 'incretin' hormones (GIP and GLP-1) whose actions range from the secretion of insulin to appetite regulation. Most of the ingested carbohydrate is taken up by the liver resulting in a transient inhibition of hepatic glucose release in a dose-dependent manner. Nonetheless, the subsequent increased hepatic glucose (and lactate) output can increase exogenous carbohydrate oxidation rates by 40-50%. The recognition and successful distribution of carbohydrate to the brain and skeletal muscles to maintain carbohydrate oxidation as well as prevent hypoglycaemia underpins the mechanisms to improve exercise performance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40279-020-01343-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159838PMC
November 2020

Hot-water immersion does not increase postprandial muscle protein synthesis rates during recovery from resistance-type exercise in healthy, young males.

J Appl Physiol (1985) 2020 04 19;128(4):1012-1022. Epub 2020 Mar 19.

Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands.

The purpose of this study was to assess the impact of postexercise hot-water immersion on postprandial myofibrillar protein synthesis rates during recovery from a single bout of resistance-type exercise in healthy, young men. Twelve healthy, adult men (age: 23 ± 1 y) performed a single bout of resistance-type exercise followed by 20 min of water immersion of both legs. One leg was immersed in hot water [46°C: hot-water immersion (HWI)], while the other leg was immersed in thermoneutral water (30°C: CON). After water immersion, a beverage was ingested containing 20 g intrinsically L-[1-C]-phenylalanine and L-[1-C]-leucine labeled milk protein with 45 g of carbohydrates. In addition, primed continuous L-[-H]-phenylalanine and L-[1-C]-leucine infusions were applied, with frequent collection of blood and muscle samples to assess myofibrillar protein synthesis rates in vivo over a 5-h recovery period. Muscle temperature immediately after water immersion was higher in the HWI compared with the CON leg (37.5 ± 0.1 vs. 35.2 ± 0.2°C; < 0.001). Incorporation of dietary protein-derived L-[1-C]-phenylalanine into myofibrillar protein did not differ between the HWI and CON leg during the 5-h recovery period (0.025 ± 0.003 vs. 0.024 ± 0.002 MPE; = 0.953). Postexercise myofibrillar protein synthesis rates did not differ between the HWI and CON leg based upon L-[1-C]-leucine (0.050 ± 0.005 vs. 0.049 ± 0.002%/h; = 0.815) and L-[-H]-phenylalanine (0.048 ± 0.002 vs. 0.047 ± 0.003%/h; = 0.877), respectively. Hot-water immersion during recovery from resistance-type exercise does not increase the postprandial rise in myofibrillar protein synthesis rates. In addition, postexercise hot-water immersion does not increase the capacity of the muscle to incorporate dietary protein-derived amino acids in muscle tissue protein during subsequent recovery. This is the first study to assess the effect of postexercise hot-water immersion on postprandial myofibrillar protein synthesis rates and the incorporation of dietary protein-derived amino acids into muscle protein. We observed that hot-water immersion during recovery from a single bout of resistance-type exercise does not further increase myofibrillar protein synthesis rates or augment the postprandial incorporation of dietary protein-derived amino acids in muscle throughout 5 h of postexercise recovery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00836.2019DOI Listing
April 2020

Protein Type, Protein Dose, and Age Modulate Dietary Protein Digestion and Phenylalanine Absorption Kinetics and Plasma Phenylalanine Availability in Humans.

J Nutr 2020 08;150(8):2041-2050

Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands.

Background: Dietary protein ingestion stimulates muscle protein synthesis by providing amino acids to the muscle. The magnitude and duration of the postprandial increase in muscle protein synthesis rates are largely determined by dietary protein digestion and amino acid absorption kinetics.

Objective: We assessed the impact of protein type, protein dose, and age on dietary protein digestion and amino acid absorption kinetics in vivo in humans.

Methods: We included data from 18 randomized controlled trials with a total of 602 participants [age: 53 ± 23 y; BMI (kg/m2): 24.8 ± 3.3] who consumed various quantities of intrinsically l-[1-13C]-phenylalanine-labeled whey (n = 137), casein (n = 393), or milk (n = 72) protein and received intravenous infusions of l-[ring-2H5]-phenylalanine, which allowed us to assess protein digestion and phenylalanine absorption kinetics and the postprandial release of dietary protein-derived phenylalanine into the circulation. The effect of aging on these processes was assessed in a subset of 82 young (aged 22 ± 3 y) and 83 older (aged 71 ± 5 y) individuals.

Results: A total of 50% ± 14% of dietary protein-derived phenylalanine appeared in the circulation over a 5-h postprandial period. Casein ingestion resulted in a smaller (45% ± 11%), whey protein ingestion in an intermediate (57% ± 10%), and milk protein ingestion in a greater (65% ± 13%) fraction of dietary protein-derived phenylalanine appearing in the circulation (P < 0.001). The postprandial availability of dietary protein-derived phenylalanine in the circulation increased with the ingestion of greater protein doses (P < 0.05). Protein digestion and phenylalanine absorption kinetics were attenuated in older when compared with young individuals, with 45% ± 10% vs. 51% ± 14% of dietary protein-derived phenylalanine appearing in the circulation, respectively (P = 0.001).

Conclusions: Protein type, protein dose, and age modulate dietary protein digestion and amino acid absorption kinetics and subsequent postprandial plasma amino acid availability in vivo in humans. These trials were registered at clinicaltrials.gov as NCT00557388, NCT00936039, NCT00991523, NCT01317511, NCT01473576, NCT01576848, NCT01578590, NCT01615276, NCT01680146, NCT01820975, NCT01986842, and NCT02596542, and at http://www.trialregister.nl as NTR3638, NTR3885, NTR4060, NTR4429, and NTR4492.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/nxaa024DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7398787PMC
August 2020

Postexercise cooling impairs muscle protein synthesis rates in recreational athletes.

J Physiol 2020 02 29;598(4):755-772. Epub 2019 Dec 29.

Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.

Key Points: Protein ingestion and cooling are strategies employed by athletes to improve postexercise recovery and, as such, to facilitate muscle conditioning. However, whether cooling affects postprandial protein handling and subsequent muscle protein synthesis rates during recovery from exercise has not been assessed. We investigated the effect of postexercise cooling on the incorporation of dietary protein-derived amino acids into muscle protein and acute postprandial (hourly) as well as prolonged (daily) myofibrillar protein synthesis rates during recovery from resistance-type exercise over 2 weeks. Cold-water immersion during recovery from resistance-type exercise lowers the capacity of the muscle to take up and/or direct dietary protein-derived amino acids towards de novo myofibrillar protein accretion. In addition, cold-water immersion during recovery from resistance-type exercise lowers myofibrillar protein synthesis rates during prolonged resistance-type exercise training. Individuals aiming to improve skeletal muscle conditioning should reconsider applying cooling as a part of their postexercise recovery strategy.

Abstract: We measured the impact of postexercise cooling on acute postprandial (hourly) as well as prolonged (daily) myofibrillar protein synthesis rates during adaptation to resistance-type exercise over 2 weeks. Twelve healthy males (aged 21 ± 2 years) performed a single resistance-type exercise session followed by water immersion of both legs for 20 min. One leg was immersed in cold water (8°C: CWI), whereas the other leg was immersed in thermoneutral water (30°C: CON). After water immersion, a beverage was ingested containing 20 g of intrinsically (l-[1- C]-phenylalanine and l-[1- C]-leucine) labelled milk protein with 45 g of carbohydrates. In addition, primed continuous l-[ring- H ]-phenylalanine and l-[1- C]-leucine infusions were applied, with frequent collection of blood and muscle samples to assess myofibrillar protein synthesis rates in vivo over a 5 h recovery period. In addition, deuterated water ( H O) was applied with the collection of saliva, blood and muscle biopsies over 2 weeks to assess the effects of postexercise cooling with protein intake on myofibrillar protein synthesis rates during more prolonged resistance-type exercise training (thereby reflecting short-term training adaptation). Incorporation of dietary protein-derived l-[1- C]-phenylalanine into myofibrillar protein was significantly lower in CWI compared to CON (0.016 ± 0.006 vs. 0.021 ± 0.007 MPE; P = 0.016). Postexercise myofibrillar protein synthesis rates were lower in CWI compared to CON based upon l-[1- C]-leucine (0.058 ± 0.011 vs. 0.072 ± 0.017% h , respectively; P = 0.024) and l-[ring- H ]-phenylalanine (0.042 ± 0.009 vs. 0.053 ± 0.013% h , respectively; P = 0.025). Daily myofibrillar protein synthesis rates assessed over 2 weeks were significantly lower in CWI compared to CON (1.48 ± 0.17 vs. 1.67 ± 0.36% day , respectively; P = 0.042). Cold-water immersion during recovery from resistance-type exercise reduces myofibrillar protein synthesis rates and, as such, probably impairs muscle conditioning.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP278996DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028023PMC
February 2020

Branched-chain amino acid and branched-chain ketoacid ingestion increases muscle protein synthesis rates in vivo in older adults: a double-blind, randomized trial.

Am J Clin Nutr 2019 10;110(4):862-872

Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands.

Background: Protein ingestion increases muscle protein synthesis rates. However, limited data are currently available on the effects of branched-chain amino acid (BCAA) and branched-chain ketoacid (BCKA) ingestion on postprandial muscle protein synthesis rates.

Objective: The aim of this study was to compare the impact of ingesting 6 g BCAA, 6 g BCKA, and 30 g milk protein (MILK) on the postprandial rise in circulating amino acid concentrations and subsequent myofibrillar protein synthesis rates in older males.

Methods: In a parallel design, 45 older males (age: 71 ± 1 y; BMI: 25.4 ± 0.8 kg/m2) were randomly assigned to ingest a drink containing 6 g BCAA, 6 g BCKA, or 30 g MILK. Basal and postprandial myofibrillar protein synthesis rates were assessed by primed continuous l-[ring-13C6]phenylalanine infusions with the collection of blood samples and muscle biopsies.

Results: Plasma BCAA concentrations increased following test drink ingestion in all groups, with greater increases in the BCAA and MILK groups compared with the BCKA group (P < 0.05). Plasma BCKA concentrations increased following test drink ingestion in all groups, with greater increases in the BCKA group compared with the BCAA and MILK groups (P < 0.05). Ingestion of MILK, BCAA, and BCKA significantly increased early myofibrillar protein synthesis rates (0-2 h) above basal rates (from 0.020 ± 0.002%/h to 0.042 ± 0.004%/h, 0.022 ± 0.002%/h to 0.044 ± 0.004%/h, and 0.023 ± 0.003%/h to 0.044 ± 0.004%/h, respectively; P < 0.001), with no differences between groups (P > 0.05). Myofibrillar protein synthesis rates during the late postprandial phase (2-5 h) remained elevated in the MILK group (0.039 ± 0.004%/h; P < 0.001), but returned to baseline values following BCAA and BCKA ingestion (0.024 ± 0.005%/h and 0.024 ± 0.005%/h, respectively; P > 0.05).

Conclusions: Ingestion of 6 g BCAA, 6 g BCKA, and 30 g MILK increases myofibrillar protein synthesis rates during the early postprandial phase (0-2 h) in vivo in healthy older males. The postprandial increase following the ingestion of 6 g BCAA and BCKA is short-lived, with higher myofibrillar protein synthesis rates only being maintained following the ingestion of an equivalent amount of intact milk protein. This trial was registered at Nederlands Trial Register (www.trialregister.nl) as NTR6047.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/nqz120DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766442PMC
October 2019

Fructose co-ingestion to increase carbohydrate availability in athletes.

J Physiol 2019 07 2;597(14):3549-3560. Epub 2019 Jul 2.

Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands.

Carbohydrate availability is important to maximize endurance performance during prolonged bouts of moderate- to high-intensity exercise as well as for acute post-exercise recovery. The primary form of carbohydrates that are typically ingested during and after exercise are glucose (polymers). However, intestinal glucose absorption can be limited by the capacity of the intestinal glucose transport system (SGLT1). Intestinal fructose uptake is not regulated by the same transport system, as it largely depends on GLUT5 as opposed to SGLT1 transporters. Combining the intake of glucose plus fructose can further increase total exogenous carbohydrate availability and, as such, allow higher exogenous carbohydrate oxidation rates. Ingesting a mixture of both glucose and fructose can improve endurance exercise performance compared to equivalent amounts of glucose (polymers) only. Fructose co-ingestion can also accelerate post-exercise (liver) glycogen repletion rates, which may be relevant when rapid (<24 h) recovery is required. Furthermore, fructose co-ingestion can lower gastrointestinal distress when relatively large amounts of carbohydrate (>1.2 g/kg/h) are ingested during post-exercise recovery. In conclusion, combined ingestion of fructose with glucose may be preferred over the ingestion of glucose (polymers) only to help trained athletes maximize endurance performance during prolonged moderate- to high-intensity exercise sessions and accelerate post-exercise (liver) glycogen repletion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP277116DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852172PMC
July 2019

Blood Flow Restriction Only Increases Myofibrillar Protein Synthesis with Exercise.

Med Sci Sports Exerc 2019 06;51(6):1137-1145

NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS.

Purpose: Combining blood flow restriction (BFR) with exercise can stimulate skeletal muscle hypertrophy. Recent observations in an animal model suggest that BFR performed without exercise can also induce anabolic effects. We assessed the effect of BFR performed both with and without low-load resistance-type exercise (LLRE) on in vivo myofibrillar protein synthesis rates in young men.

Methods: Twenty healthy young men (age = 24 ± 1 yr, body mass index = 22.9 ± 0.6 kg·m) were randomly assigned to remain in resting condition (REST ± BFR; n = 10) or to perform LLRE (LLRE ± BFR at 20% one-repetition maximum; n = 10), combined with two 5-min cycles of single leg BFR. Myofibrillar protein synthesis rates were assessed during a 5-h post-BFR period by combining a primed continuous L-[ring-C6]phenylalanine infusion with the collection of blood samples, and muscle biopsies from the BFR leg and the contralateral control leg. The phosphorylation status of anabolic signaling (mammalian target of rapamycin pathway) and metabolic stress (acetyl-CoA carboxylase)-related proteins, as well as the mRNA expression of genes associated with skeletal muscle mass regulation, was assessed in the collected muscle samples.

Results: Under resting conditions, no differences in anabolic signaling or myofibrillar protein synthesis rates were observed between REST + BFR and REST (0.044% ± 0.004% vs 0.043% ± 0.004% per hour, respectively; P = 0.683). By contrast, LLRE + BFR increased myofibrillar protein synthesis rates by 10% ± 5% compared with LLRE (0.048% ± 0.005% vs 0.043% ± 0.004% per hour, respectively; P = 0.042). Furthermore, compared with LLRE, LLRE + BFR showed higher phosphorylation status of acetyl-CoA carboxylase and 4E-BP1 as well as the elevated mRNA expression of MuRF1 (all P < 0.05).

Conclusion: BFR does not increase myofibrillar protein synthesis rates in healthy young men under resting conditions. When combined with LLRE, BFR increases postexercise myofibrillar protein synthesis rates in vivo in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1249/MSS.0000000000001899DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553970PMC
June 2019

Leucine Supplementation Does Not Attenuate Skeletal Muscle Loss during Leg Immobilization in Healthy, Young Men.

Nutrients 2018 May 17;10(5). Epub 2018 May 17.

Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 61 6200 MD Maastricht, The Netherlands.

Background: Short successive periods of physical inactivity occur throughout life and contribute considerably to the age-related loss of skeletal muscle mass. The maintenance of muscle mass during brief periods of disuse is required to prevent functional decline and maintain metabolic health.

Objective: To assess whether daily leucine supplementation during a short period of disuse can attenuate subsequent muscle loss in vivo in humans.

Methods: Thirty healthy (22 ± 1 y) young males were exposed to a 7-day unilateral knee immobilization intervention by means of a full leg cast with (LEU, = 15) or without (CON, = 15) daily leucine supplementation (2.5 g leucine, three times daily). Prior to and directly after immobilization, quadriceps muscle cross-sectional area (computed tomography (CT) scan) and leg strength (one-repetition maximum (1-RM)) were assessed. Furthermore, muscle biopsies were taken in both groups before and after immobilization to assess changes in type I and type II muscle fiber CSA.

Results: Quadriceps muscle cross-sectional area (CSA) declined in the CON and LEU groups ( < 0.01), with no differences between the two groups (from 7712 ± 324 to 7287 ± 305 mm² and from 7643 ± 317 to 7164 ± 328 mm²; = 0.61, respectively). Leg muscle strength decreased from 56 ± 4 to 53 ± 4 kg in the CON group and from 63 ± 3 to 55 ± 2 kg in the LEU group (main effect of time < 0.01), with no differences between the groups ( = 0.052). Type I and II muscle fiber size did not change significantly over time, in both groups ( > 0.05).

Conclusions: Free leucine supplementation with each of the three main meals (7.5 g/d) does not attenuate the decline of muscle mass and strength during a 7-day limb immobilization intervention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu10050635DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986514PMC
May 2018

Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts?

Nutrients 2017 Mar 30;9(4). Epub 2017 Mar 30.

Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), P.O. Box 616, 6200 MD Maastricht, The Netherlands.

Carbohydrate availability in the form of muscle and liver glycogen is an important determinant of performance during prolonged bouts of moderate- to high-intensity exercise. Therefore, when effective endurance performance is an objective on multiple occasions within a 24-h period, the restoration of endogenous glycogen stores is the principal factor determining recovery. This review considers the role of glucose-fructose co-ingestion on liver and muscle glycogen repletion following prolonged exercise. Glucose and fructose are primarily absorbed by different intestinal transport proteins; by combining the ingestion of glucose with fructose, both transport pathways are utilised, which increases the total capacity for carbohydrate absorption. Moreover, the addition of glucose to fructose ingestion facilitates intestinal fructose absorption via a currently unidentified mechanism. The co-ingestion of glucose and fructose therefore provides faster rates of carbohydrate absorption than the sum of glucose and fructose absorption rates alone. Similar metabolic effects can be achieved via the ingestion of sucrose (a disaccharide of glucose and fructose) because intestinal absorption is unlikely to be limited by sucrose hydrolysis. Carbohydrate ingestion at a rate of ≥1.2 g carbohydrate per kg body mass per hour appears to maximise post-exercise muscle glycogen repletion rates. Providing these carbohydrates in the form of glucose-fructose (sucrose) mixtures does not further enhance muscle glycogen repletion rates over glucose (polymer) ingestion alone. In contrast, liver glycogen repletion rates are approximately doubled with ingestion of glucose-fructose (sucrose) mixtures over isocaloric ingestion of glucose (polymers) alone. Furthermore, glucose plus fructose (sucrose) ingestion alleviates gastrointestinal distress when the ingestion rate approaches or exceeds the capacity for intestinal glucose absorption (~1.2 g/min). Accordingly, when rapid recovery of endogenous glycogen stores is a priority, ingesting glucose-fructose mixtures (or sucrose) at a rate of ≥1.2 g·kg body mass·h can enhance glycogen repletion rates whilst also minimising gastrointestinal distress.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu9040344DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409683PMC
March 2017

Fructose and Sucrose Intake Increase Exogenous  Carbohydrate Oxidation during Exercise.

Nutrients 2017 Feb 20;9(2). Epub 2017 Feb 20.

NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands.

Peak exogenous carbohydrate oxidation rates typically reach ~1 g∙min-1 during exercise when ample glucose or glucose polymers are ingested. Fructose co-ingestion has been shown to further increase exogenous carbohydrate oxidation rates. The purpose of this study was to assess the impact of fructose co-ingestion provided either as a monosaccharide or as part of the disaccharide sucrose on exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists. Ten trained male cyclists (VO2peak: 65 ± 2 mL∙kg-1∙min-1) cycled on four different occasions for 180 min at 50% Wmax during which they consumed a carbohydrate solution providing 1.8 g∙min-1 of glucose (GLU), 1.2 g∙min-1 glucose + 0.6 g∙min-1 fructose (GLU + FRU), 0.6 g∙min-1 glucose + 1.2 g∙min-1 sucrose (GLU + SUC), or water (WAT). Peak exogenous carbohydrate oxidation rates did not differ between GLU + FRU and GLU + SUC (1.40 ± 0.06 vs. 1.29 ± 0.07 g∙min-1, respectively, p = 0.999), but were 46% ± 8% higher when compared to GLU (0.96 ± 0.06 g∙min-1: p < 0.05). In line, exogenous carbohydrate oxidation rates during the latter 120 min of exercise were 46% ± 8% higher in GLU + FRU or GLU + SUC compared with GLU (1.19 ± 0.12, 1.13 ± 0.21, and 0.82 ± 0.16 g∙min-1, respectively, p < 0.05). We conclude that fructose co-ingestion (0.6 g∙min-1) with glucose (1.2 g∙min-1) provided either as a monosaccharide or as sucrose strongly increases exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu9020167DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5331598PMC
February 2017

Liver glycogen metabolism during and after prolonged endurance-type exercise.

Am J Physiol Endocrinol Metab 2016 09 19;311(3):E543-53. Epub 2016 Jul 19.

Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.

Carbohydrate and fat are the main substrates utilized during prolonged endurance-type exercise. The relative contribution of each is determined primarily by the intensity and duration of exercise, along with individual training and nutritional status. During moderate- to high-intensity exercise, carbohydrate represents the main substrate source. Because endogenous carbohydrate stores (primarily in liver and muscle) are relatively small, endurance-type exercise performance/capacity is often limited by endogenous carbohydrate availability. Much exercise metabolism research to date has focused on muscle glycogen utilization, with little attention paid to the contribution of liver glycogen. (13)C magnetic resonance spectroscopy permits direct, noninvasive measurements of liver glycogen content and has increased understanding of the relevance of liver glycogen during exercise. In contrast to muscle, endurance-trained athletes do not exhibit elevated basal liver glycogen concentrations. However, there is evidence that liver glycogenolysis may be lower in endurance-trained athletes compared with untrained controls during moderate- to high-intensity exercise. Therefore, liver glycogen sparing in an endurance-trained state may account partly for training-induced performance/capacity adaptations during prolonged (>90 min) exercise. Ingestion of carbohydrate at a relatively high rate (>1.5 g/min) can prevent liver glycogen depletion during moderate-intensity exercise independent of the type of carbohydrate (e.g., glucose vs. sucrose) ingested. To minimize gastrointestinal discomfort, it is recommended to ingest specific combinations or types of carbohydrates (glucose plus fructose and/or sucrose). By coingesting glucose with either galactose or fructose, postexercise liver glycogen repletion rates can be doubled. There are currently no guidelines for carbohydrate ingestion to maximize liver glycogen repletion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00232.2016DOI Listing
September 2016

Sucrose ingestion after exhaustive exercise accelerates liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes.

J Appl Physiol (1985) 2016 Jun 24;120(11):1328-34. Epub 2016 Mar 24.

NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands;

The purpose of this study was to assess the effects of sucrose vs. glucose ingestion on postexercise liver and muscle glycogen repletion. Fifteen well-trained male cyclists completed two test days. Each test day started with glycogen-depleting exercise, followed by 5 h of recovery, during which subjects ingested 1.5 g·kg(-1)·h(-1) sucrose or glucose. Blood was sampled frequently and (13)C magnetic resonance spectroscopy and imaging were employed 0, 120, and 300 min postexercise to determine liver and muscle glycogen concentrations and liver volume. Results were as follows: Postexercise muscle glycogen concentrations increased significantly from 85 ± 27 (SD) vs. 86 ± 35 mmol/l to 140 ± 23 vs. 136 ± 26 mmol/l following sucrose and glucose ingestion, respectively (no differences between treatments: P = 0.673). Postexercise liver glycogen concentrations increased significantly from 183 ± 47 vs. 167 ± 65 mmol/l to 280 ± 72 vs. 234 ± 81 mmol/l following sucrose and glucose ingestion, respectively (time × treatment, P = 0.051). Liver volume increased significantly over the 300-min period after sucrose ingestion only (time × treatment, P = 0.001). As a result, total liver glycogen content increased during postexercise recovery to a greater extent in the sucrose treatment (from 53.6 ± 16.2 to 86.8 ± 29.0 g) compared with the glucose treatment (49.3 ± 25.5 to 65.7 ± 27.1 g; time × treatment, P < 0.001), equating to a 3.4 g/h (95% confidence interval: 1.6-5.1 g/h) greater repletion rate with sucrose vs. glucose ingestion. In conclusion, sucrose ingestion (1.5 g·kg(-1)·h(-1)) further accelerates postexercise liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.01023.2015DOI Listing
June 2016

Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists.

Am J Physiol Endocrinol Metab 2015 Dec 20;309(12):E1032-9. Epub 2015 Oct 20.

Department of Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands; and

The purpose of this study was to define the effect of glucose ingestion compared with sucrose ingestion on liver and muscle glycogen depletion during prolonged endurance-type exercise. Fourteen cyclists completed two 3-h bouts of cycling at 50% of peak power output while ingesting either glucose or sucrose at a rate of 1.7 g/min (102 g/h). Four cyclists performed an additional third test for reference in which only water was consumed. We employed (13)C magnetic resonance spectroscopy to determine liver and muscle glycogen concentrations before and after exercise. Expired breath was sampled during exercise to estimate whole body substrate use. After glucose and sucrose ingestion, liver glycogen levels did not show a significant decline after exercise (from 325 ± 168 to 345 ± 205 and 321 ± 177 to 348 ± 170 mmol/l, respectively; P > 0.05), with no differences between treatments. Muscle glycogen concentrations declined (from 101 ± 49 to 60 ± 34 and 114 ± 48 to 67 ± 34 mmol/l, respectively; P < 0.05), with no differences between treatments. Whole body carbohydrate utilization was greater with sucrose (2.03 ± 0.43 g/min) vs. glucose (1.66 ± 0.36 g/min; P < 0.05) ingestion. Both liver (from 454 ± 33 to 283 ± 82 mmol/l; P < 0.05) and muscle (from 111 ± 46 to 67 ± 31 mmol/l; P < 0.01) glycogen concentrations declined during exercise when only water was ingested. Both glucose and sucrose ingestion prevent liver glycogen depletion during prolonged endurance-type exercise. Sucrose ingestion does not preserve liver glycogen concentrations more than glucose ingestion. However, sucrose ingestion does increase whole body carbohydrate utilization compared with glucose ingestion. This trial was registered at https://www.clinicaltrials.gov as NCT02110836.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00376.2015DOI Listing
December 2015
-->