Publications by authors named "Caroline B S Sales"

11 Publications

  • Page 1 of 1

Essential oil from leaves of Conobea scoparioides (Cham. & Schltdl.) Benth. (Plantaginaceae) causes cell death in HepG2 cells and inhibits tumor development in a xenograft model.

Biomed Pharmacother 2020 Sep 20;129:110402. Epub 2020 Jun 20.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil. Electronic address:

Conobea scoparioides (Cham. & Schltdl.) Benth. (syn. Sphaerotheca scoparioides Cham. & Schldtl.) (Plantaginaceae), popularly known as "pataqueira", "vassourinha-do-brejo" and/or "hierba-de-sapo", is a popular medicinal plant used to treat leishmaniasis, pain and beriberi. In addition, inhibition of cell adhesion, antioxidant, cytotoxic and leishmanicidal activities of compounds or fractions of C. scoparioides have been reported. In the present work, chemical constituents and in vitro and in vivo anti-liver cancer potential of essential oil (EO) from leaves of C. scoparioides were investigated using human hepatocellular carcinoma HepG2 cells as a cell model. EO was obtained by hydrodistillation using a Clevenger-type apparatus and characterized by GC-MS and GC-FID. The in vitro cytotoxic effect was evaluated on three human cancer cell lines (MCF-7, HepG2 and HCT116) and one human non-cancerous cell line (MRC-5) using the Alamar blue assay. Phosphatidylserine externalization and cell cycle distribution were quantified in HepG2 cells by flow cytometry after 48 h incubation. The effectiveness of EO in anti-liver cancer model was studied with HepG2 cells grafted on C.B. 17 SCID mice. The main constituents of EO were thymol methyl ether (62 %), thymol (16 %) and α-phellandrene (14 %). EO displayed an in vitro cytotoxic effect against all human cancer cell lines and caused externalization of phosphatidylserine and DNA fragmentation in HepG2 cells, suggesting induction of apoptotic-like cell death. In vivo tumor mass inhibition of 36.7 and 55.8 % was observed for treatment with EO at doses of 40 and 80 mg/kg, respectively. These results indicate in vitro and in vivo anti-liver cancer potential of EO from leaves of C. scoparioides.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2020.110402DOI Listing
September 2020

In vitro and in vivo growth inhibition of human acute promyelocytic leukemia HL-60 cells by Guatteria megalophylla Diels (Annonaceae) leaf essential oil.

Biomed Pharmacother 2020 Feb 30;122:109713. Epub 2019 Dec 30.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil. Electronic address:

Guatteria megalophylla Diels (Annonaceae) is an 8-10 m tall tree that grows near streams and is widely spread throughout Colombian, Ecuadorian, Peruvian, Brazilian and Guianese Amazon rainforest. Herein, we investigated for the first time the chemical composition and in vitro and in vivo anti-leukemia potential of G. megalophylla leaf essential oil (EO) using human promyelocytic leukemia HL-60 cells as model. EO was obtained by a hydrodistillation clevenger-type apparatus and characterized quali- and quantitatively by GC-MS and GC-FID, respectively. In vitro cytotoxic potential of EO was evaluated in human cancer cell lines (HL-60, MCF-7 CAL27, HSC-3, HepG2 and HCT116) and in human non-cancer cell line (MRC-5) by Alamar blue method. Annexin V/propidium iodide staining, cell cycle distribution and reactive oxygen species (ROS) were assessed by flow cytometry for HL-60 cells treated with EO. In vivo efficacy of EO (50 and 100 mg/kg) was evaluated in C.B-17 SCID mice with HL-60 cell xenografts. Chemical composition analyses showed spathulenol, γ-muurolene, bicyclogermacrene, β-elemene and δ-elemene as main constituents of assayed sample. EO displayed in vitro cytotoxicity, including anti-leukemia effect with IC value of 12.51 μg/mL for HL-60 cells. EO treatment caused augment of phosphatidylserine externalization and DNA fragmentation without increasing of ROS in HL-60 cells. In vivo tumor mass inhibition rates of EO was 16.6-48.8 %. These data indicate anti-leukemia potential of G. megalophylla leaf EO.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2019.109713DOI Listing
February 2020

Ruthenium(II) complexes with 6-methyl-2-thiouracil selectively reduce cell proliferation, cause DNA double-strand break and trigger caspase-mediated apoptosis through JNK/p38 pathways in human acute promyelocytic leukemia cells.

Sci Rep 2019 08 7;9(1):11483. Epub 2019 Aug 7.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil.

Ruthenium(II) complexes with 6-methyl-2-thiouracil cis-[Ru(6m2tu)(PPh)] (1) and [Ru(6m2tu)(dppb)] (2) (where PPhtriphenylphosphine; dppb = 1,4-bis(diphenylphosphino)butane; and 6m2tu = 6-methyl-2-thiouracil) are potent cytotoxic agents and able to bind DNA. The aim of this study was to evaluate in vitro cellular underlying mechanism and in vivo effectiveness of these ruthenium(II) complexes in human acute promyelocytic leukemia HL-60 cells. Both complexes displayed potent and selective cytotoxicity in myeloid leukemia cell lines, and were detected into HL-60 cells. Reduction of the cell proliferation and augmented phosphatidylserine externalization, caspase-3, -8 and -9 activation and loss of mitochondrial transmembrane potential were observed in HL-60 cells treated with both complexes. Cotreatment with Z-VAD(OMe)-FMK, a pan-caspase inhibitor, reduced Ru(II) complexes-induced apoptosis. In addition, both metal complexes induced phosphorylation of histone H2AX (S139), JNK2 (T183/Y185) and p38α (T180/Y182), and cotreatment with JNK/SAPK and p38 MAPK inhibitors reduced complexes-induced apoptosis, indicating DNA double-strand break and activation of caspase-mediated apoptosis through JNK/p38 pathways. Complex 1 also reduced HL-60 cell growth in xenograft model. Overall, the outcome indicated the ruthenium(II) complexes with 6-methyl-2-thiouracil as a novel promising antileukemic drug candidates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-47914-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686011PMC
August 2019

Ru(II)-thymine complex causes DNA damage and apoptotic cell death in human colon carcinoma HCT116 cells mediated by JNK/p38/ERK1/2 via a p53-independent signaling.

Sci Rep 2019 07 31;9(1):11094. Epub 2019 Jul 31.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.

Ru(II)-thymine complex [Ru(PPh)(Thy)(bipy)]PF (where PPh = triphenylphosphine, Thy = thyminate and bipy = 2,2'-bipyridine) is a potent cytotoxic agent with ability to bind to DNA, inducing caspase-mediated apoptosis in leukemia cells. In this study, we investigated the mechanism underlying the cell death induction by Ru(II)-thymine complex in human colon carcinoma HCT116 cells, as well as its effect in xenograft tumor model. The Ru(II)-thymine complex increased significantly the percentage of apoptotic HCT116 cells. Co-treatment with a JNK/SAPK inhibitor, p38 MAPK inhibitor and MEK inhibitor, which inhibit the activation of ERK1/2, caused a marked reduction of the percentage of complex-induced apoptotic cells. Moreover, the Ru(II)-thymine complex induced an increase in phospho-JNK2 (T183/Y185), phospho-p38α (T180/Y182) and phospho-ERK1 (T202/Y204) levels in HCT116 cells. Treatment with the Ru(II)-thymine complex increased significantly the phospho-histone H2AX (S139) expression, a DNA damage marker. The expression of phospho-p53 (S15) and MDM2 were not changed, and the co-treatment with a p53 inhibitor (cyclic pifithrin-α) did not reduce the complex-induced apoptosis in HCT116 cells, indicating that the Ru(II)-thymine complex induces DNA damage-mediated apoptosis by JNK/p38/ERK1/2 via a p53-independent signaling. The Ru(II)-thymine complex (1 and 2 mg/kg/day) also inhibited HCT116 cell growth in a xenograft model, reducing the tumor mass at 32.6-40.1%. Altogether, indicate that the Ru(II)-thymine complex is a promising anti-colon cancer drug candidate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-47539-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668648PMC
July 2019

Ruthenium Complexes Containing Heterocyclic Thioamidates Trigger Caspase-Mediated Apoptosis Through MAPK Signaling in Human Hepatocellular Carcinoma Cells.

Front Oncol 2019 9;9:562. Epub 2019 Jul 9.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil.

Herein, ruthenium complexes containing heterocyclic thioamidates [Ru(mmi)(bipy)(dppb)]PF (), [Ru(tzdt)(bipy)(dppb)]PF (), [Ru(dmp)(bipy)(dppb)]PF () and [Ru(mpca)(bipy)(dppb)]PF () were investigated for their cellular and molecular effects in cancer cell lines. Complexes and were the most potent of the four compounds against a panel of different cancer cell lines in monolayer cultures and showed potent cytotoxicity in a 3D model of multicellular spheroids that formed from human hepatocellular carcinoma HepG2 cells. In addition, both complexes were able to bind to DNA in a calf thymus DNA model. Compared to the controls, a reduction in cell proliferation, phosphatidylserine externalization, internucleosomal DNA fragmentation, and the loss of the mitochondrial transmembrane potential were observed in HepG2 cells that were treated with these complexes. Additionally, coincubation with a pan-caspase inhibitor (Z-VAD(OMe)-FMK) reduced the levels of apoptosis that were induced by these compounds compared to those in the negative controls, indicating that cell death through apoptosis occurred via a caspase-dependent pathway. Moreover, these complexes also induced the phosphorylation of ERK1/2, and coincubation with an MEK inhibitor (U0126), which is known to inhibit the activation of ERK1/2, but not JNK/SAPK and p38 MAPK inhibitors, reduced the complexes-induced apoptosis compared to that in the negative controls, indicating that the induction of apoptotic cell death occurred through ERK1/2 signaling in HepG2 cells. On the other hand, no increase in oxidative stress was observed in HepG2 cells treated with the complexes, and the complexes-induced apoptosis was not reduced with coincubation with the antioxidant N-acetylcysteine or a p53 inhibitor compared to that in the negative controls, indicating that apoptosis occurred via oxidative stress- and p53-independent pathways. Finally, these complexes also reduced the growth of HepG2 cells that were engrafted in C.B-17 SCID mice compared to that in the negative controls. These results indicated that these complexes are novel anticancer drug candidates for liver cancer treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2019.00562DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629894PMC
July 2019

Ruthenium Complexes With Piplartine Cause Apoptosis Through MAPK Signaling by a p53-Dependent Pathway in Human Colon Carcinoma Cells and Inhibit Tumor Development in a Xenograft Model.

Front Oncol 2019 3;9:582. Epub 2019 Jul 3.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil.

Ruthenium complexes with piplartine, [Ru(piplartine)(dppf)(bipy)](PF) () and [Ru(piplartine)(dppb)(bipy)](PF) () (dppf = 1,1-bis(diphenylphosphino) ferrocene; dppb = 1,4-bis(diphenylphosphino)butane and bipy = 2,2'-bipyridine), were recently synthesized and displayed more potent cytotoxicity than piplartine in different cancer cells, regulated RNA transcripts of several apoptosis-related genes, and induced reactive oxygen species (ROS)-mediated apoptosis in human colon carcinoma HCT116 cells. The present work aimed to explore the underlying mechanisms through which these ruthenium complexes induce cell death in HCT116 cells , as well as their action in a xenograft model. Both complexes significantly increased the percentage of apoptotic HCT116 cells, and co-treatment with inhibitors of JNK/SAPK, p38 MAPK, and MEK, which inhibits the activation of ERK1/2, significantly reduced the apoptosis rate induced by these complexes. Moreover, significant increase in phospho-JNK2 (T183/Y185), phospho-p38α (T180/Y182), and phospho-ERK1 (T202/Y204) expressions were observed in cells treated with these complexes, indicating MAPK-mediated apoptosis. In addition, co-treatment with a p53 inhibitor (cyclic pifithrin-α) and the ruthenium complexes significantly reduced the apoptosis rate in HCT116 cells, and increased phospho-p53 (S15) and phospho-histone H2AX (S139) expressions, indicating induction of DNA damage and p53-dependent apoptosis. Both complexes also reduced HCT116 cell growth in a xenograft model. Tumor mass inhibition rates were 35.06, 29.71, and 32.03% for the complex (15 μmol/kg/day), complex (15 μmol/kg/day), and piplartine (60 μmol/kg/day), respectively. These data indicate these ruthenium complexes as new anti-colon cancer drugs candidates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2019.00582DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616125PMC
July 2019

In vitro and in vivo anti-leukemia activity of the stem bark of Salacia impressifolia (Miers) A. C. Smith (Celastraceae).

J Ethnopharmacol 2019 Mar 13;231:516-524. Epub 2018 Nov 13.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia 40296-710, Brazil. Electronic address:

Ethnopharmacological Relevance: Salacia impressifolia (Miers) A. C. Smith (family Celastraceae) is a traditional medicinal plant found in the Amazon Rainforest known as "miraruíra", "cipó-miraruíra" or "panu" and is traditionally used to treat dengue, flu, inflammation, pain, diabetes, male impotency, renal affections, rheumatism and cancer.

Aim Of The Study: The aim of this study was to investigate in vitro and in vivo anti-leukemia activity of the stem bark of S. impressifolia in experimental models.

Materials And Methods: The in vitro cytotoxic activity of extracts, fractions and quinonemethide triterpenes (22-hydroxytingenone, tingenone and pristimerin) from the stem bark of S. impressifolia in cultured cancer cells was determined. The in vivo antitumor activity of the ethyl acetate extract (EAE) and of its fraction (FEAE.3) from the stem bark of S. impressifolia was assessed in C.B-17 severe combined immunodeficient (SCID) mice engrafted with human promyelocytic leukemia HL-60 cells.

Results: The extract EAE, its fraction FEAE.3, and quinonemethide triterpenes exhibited potent cytotoxicity against cancer cell lines, including in vitro anti-leukemia activity against HL-60 and K-562 cells. Moreover, extract EAE and its fraction FEAE.3 inhibited the in vivo development of HL-60 cells engrafted in C.B-17 SCID mice. Tumor mass inhibition rates were measured as 40.4% and 81.5% for the extract EAE (20 mg/kg) and for its fraction FEAE.3 (20 mg/kg), respectively.

Conclusions: Ethyl acetate extract and its fraction from the stem bark of S. impressifolia exhibit in vitro and in vivo anti-leukemia activity that can be attributed to their quinonemethide triterpenes. These data confirm the ethnopharmacological use of this species and may contribute to the development of a novel anticancer herbal medicine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2018.11.008DOI Listing
March 2019

A novel ruthenium complex with xanthoxylin induces S-phase arrest and causes ERK1/2-mediated apoptosis in HepG2 cells through a p53-independent pathway.

Cell Death Dis 2018 01 23;9(2):79. Epub 2018 Jan 23.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.

Ruthenium-based compounds have gained great interest due to their potent cytotoxicity in cancer cells; however, much of their potential applications remain unexplored. In this paper, we report the synthesis of a novel ruthenium complex with xanthoxylin (RCX) and the investigation of its cellular and molecular action in human hepatocellular carcinoma HepG2 cells. We found that RCX exhibited a potent cytotoxic effect in a panel of cancer cell lines in monolayer cultures and in a 3D model of multicellular cancer spheroids formed from HepG2 cells. This compound is detected at a high concentration in the cell nuclei, induces DNA intercalation and inhibits DNA synthesis, arresting the cell cycle in the S-phase, which is followed by the activation of the caspase-mediated apoptosis pathway in HepG2 cells. Gene expression analysis revealed changes in the expression of genes related to cell cycle control, apoptosis and the MAPK pathway. In addition, RCX induced the phosphorylation of ERK1/2, and pretreatment with U-0126, an MEK inhibitor known to inhibit the activation of ERK1/2, prevented RCX-induced apoptosis. In contrast, pretreatment with a p53 inhibitor (cyclic pifithrin-α) did not prevent RCX-induced apoptosis, indicating the activation of a p53-independent apoptosis pathway. RCX also presented a potent in vivo antitumor effect in C.B-17 SCID mice engrafted with HepG2 cells. Altogether, these results indicate that RCX is a novel anticancer drug candidate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41419-017-0104-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833756PMC
January 2018

Novel piplartine-containing ruthenium complexes: synthesis, cell growth inhibition, apoptosis induction and ROS production on HCT116 cells.

Oncotarget 2017 Nov 1;8(61):104367-104392. Epub 2017 Nov 1.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.

Piplartine (piperlongumine) is a plant-derived molecule that has been receiving intense interest due to its anticancer characteristics that target the oxidative stress. In the present paper, two novel piplartine-containing ruthenium complexes [Ru(piplartine)(dppf)(bipy)](PF) (1) and [Ru(piplartine)(dppb)(bipy)](PF) (2) were synthesized and investigated for their cellular and molecular responses on cancer cell lines. We found that both complexes are more potent than metal-free piplartine in a panel of cancer cell lines on monolayer cultures, as well in 3D model of cancer multicellular spheroids formed from human colon carcinoma HCT116 cells. Mechanistic studies uncovered that the complexes reduced the cell growth and caused phosphatidylserine externalization, internucleosomal DNA fragmentation, caspase-3 activation and loss of the mitochondrial transmembrane potential on HCT116 cells. Moreover, the pre-treatment with Z-VAD(OMe)-FMK, a pan-caspase inhibitor, reduced the complexes-induced apoptosis, indicating cell death by apoptosis through caspase-dependent and mitochondrial intrinsic pathways. Treatment with the complexes also caused a marked increase in the production of reactive oxygen species (ROS), including hydrogen peroxide, superoxide anion and nitric oxide, and decreased reduced glutathione levels. Application of N-acetyl-cysteine, an antioxidant, reduced the ROS levels and apoptosis induced by the complexes, indicating activation of ROS-mediated apoptosis pathway. RNA transcripts of several genes, including gene related to the cell cycle, apoptosis and oxidative stress, were regulated under treatment. However, the complexes failed to induce DNA intercalation. In conclusion, the complexes are more potent than piplartine against different cancer cell lines and are able to induce caspase-dependent and mitochondrial intrinsic apoptosis on HCT116 cells by ROS-mediated pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.22248DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732813PMC
November 2017

Evaluation of Mast Cell Density in the Tumor Microenvironment in Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma.

Appl Immunohistochem Mol Morphol 2017 Nov/Dec;25(10):e83-e88

*School of Dentistry of the Federal University of Bahia †Laboratory of Pathology and Molecular Biology, Oswaldo Cruz Foundation ‡Institute of Health Science, Federal University of Bahia §Laboratory of Oral Surgical Pathology, School of Dentistry of the Federal University of Bahia, Bahia, Brazil.

The objective of this study was to compare mast cell density (MCD) in oral epithelial dysplasias (OED) and oral squamous cell carcinoma (OSCC) and determine its correlation with clinical and histopathologic parameters and the degree of tumor differentiation. Thirty OSCC samples, 14 OED samples, and 4 non-neoplastic oral mucosa samples were analyzed by immunohistochemistry to determine MCD based on the expression of MC tryptase. In addition, MCs were categorized morphologically into degranulated and granulated cells. MCD was significantly higher in OSCC lesions with a greater degree of differentiation (P=0.04). No significant difference in MCD was detected between mild and moderate OED samples (P=0.09). Our findings indicate that MCs are present in the tumor microenvironment and may be associated with a better prognosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/PAI.0000000000000587DOI Listing
November 2018

MCM3: A Novel Proliferation Marker in Oral Squamous Cell Carcinoma.

Appl Immunohistochem Mol Morphol 2018 02;26(2):120-125

Laboratory of Pathology and Molecular Biology, Oswaldo Cruz Foundation.

The present study sought to evaluate and compare the immunoexpression of proteins minichromosome maintenance (MCM) 3 and Ki-67 in oral squamous cell carcinoma (OSCC) to assess the potential of these proteins as markers of cellular proliferation. Twenty-eight cases of OSCC, 9 of tumor-free resection margins (TM), and 4 of non-neoplastic oral mucosa (NNM) were subjected to immunohistochemistry to detect the expression of proteins MCM3 and Ki-67. All OSCCs demonstrated positivity for both proteins. In these tumors, greater MCM3 immunoreactivity was observed in comparison with Ki-67, whereas TMs and NNMs exhibited greater Ki-67 expression compared with MCM3. The immunoexpression of Ki-67 seemed to be influenced by the inflammatory process, particularly in TM and NNM. Our findings indicate that although both MCM3 and Ki-67 represent reliable markers of cellular proliferation in OSCC, as MCM3 expression does not appear to be influenced by external factors, this protein may emerge as a novel marker of cellular proliferation in these types of tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/PAI.0000000000000397DOI Listing
February 2018
-->