Publications by authors named "Carolina Felipe Alves de Oliveira"

3 Publications

  • Page 1 of 1

GATA-1 mutation alters the spermatogonial phase and steroidogenesis in adult mouse testis.

Mol Cell Endocrinol 2021 Nov 26;542:111519. Epub 2021 Nov 26.

Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. Electronic address:

GATA-1 is a transcription factor from the GATA family, which features zinc fingers for DNA binding. This protein was initially identified as a crucial regulator of blood cell differentiation, but it is currently known that the Gata-1 gene expression is not limited to this system. Although the testis is also a site of significant GATA-1 expression, its role in testicular cells remains considerably unexplored. In the present study, we evaluated the testicular morphophysiology of adult ΔdblGATA mice with a mutation in the GATA-1 protein. Regarding testicular histology, GATA-1 mutant mice exhibited few changes in the seminiferous tubules, particularly in germ cells. A high proportion of differentiated spermatogonia, an increased number of apoptotic pre-leptotene spermatocytes (Caspase-3-positive), and a high frequency of sperm head defects were observed in ΔdblGATA mice. The main differences were observed in the intertubular compartment, as ΔdblGATA mice showed several morphofunctional changes in Leydig cells. Reduced volume, increased number and down-regulation of steroidogenic enzymes were observed in ΔdblGATA Leydig cells. Moreover, the mutant animal showed lower serum testosterone concentration and high LH levels. These results are consistent with the phenotypic and biometric data of mutant mice, i.e., shorter anogenital index and reduced accessory sexual gland weight. In conclusion, our findings suggest that GATA-1 protein is an important factor for germ cell differentiation as well as for the steroidogenic activity in the testis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2021.111519DOI Listing
November 2021

Correction to: Comparative testis structure and function in three representative mice strains.

Cell Tissue Res 2021 Feb;383(2):907-910

Laboratory of Cellular Biology Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Belo Horizonte, Brazil.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-020-03366-8DOI Listing
February 2021

Comparative testis structure and function in three representative mice strains.

Cell Tissue Res 2020 Nov 14;382(2):391-404. Epub 2020 Jul 14.

Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.

Mice are widely used as experimental models due to several positive characteristics and in particular their suitability for studies involving molecular biology and transgenesis. Despite the large number of mice strains currently available, the literature regarding their basic reproductive biology is still relatively scarce. Herein, we comparatively evaluated several important and correlated parameters related to testis structure and function in sexually mature male mice of inbred (C57BL/6, n = 19; BALB/c, n = 17) and outbred (Swiss, n = 17) strains, frequently utilized in research. Swiss mice presented significant variation for many parameters evaluated, including higher sperm production, mainly when compared to the C57BL/6 strain. However, some key parameters such as the duration of spermatogenesis, the Sertoli cell number per testis, and the spermatogenic efficiency were similar among the different strains. Although presenting significantly higher Leydig cell (LC) proportion and numbers per testis gram and per testis, the anogenital index was smaller in Swiss mice. Estradiol levels were lower in C57BL/6, whereas testosterone levels and 3β-HSD expression were similar among strains. Regarding the LC/macrophages relationship, in comparison to the literature, we reported a much higher contribution of macrophages to the mouse intertubule. Thus, we estimated that there are around 1.6 macrophages per LC in BALB/c mice and this intriguing finding could be relevant to testis function in overall and spermatogonial biology in particular. Taken together, our results highlight the importance of knowing more accurately the testis structure and function in the different mice strains available for research, particularly when a specific testis parameter is being investigated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-020-03239-0DOI Listing
November 2020
-->