Publications by authors named "Carmen M Ali"

2 Publications

  • Page 1 of 1

Investigation of Biochemical Alterations in Ischemic Stroke Using Fourier Transform Infrared Imaging Spectroscopy-A Preliminary Study.

Brain Sci 2019 Oct 25;9(11). Epub 2019 Oct 25.

Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha 34110, Qatar.

Objective: Brain damage, long-term disability and death are the dreadful consequences of ischemic stroke. It causes imbalance in the biochemical constituents that distorts the brain dynamics. Understanding the sub-cellular alterations associated with the stroke will contribute to deeper molecular understanding of brain plasticity and recovery. Current routine approaches examining lipid and protein biochemical changes post stoke can be difficult. Fourier Transform Infrared (FTIR) imaging spectroscopy can play a vital role in detecting these molecular alterations on a sub-cellular level due to its high spatial resolution, accuracy and sensitivity. This study investigates the biochemical and molecular changes in peri-infract zone (PIZ) (contiguous area not completely damaged by stroke) and ipsi-lesional white matter (WM) (right below the stroke and PIZ regions) nine weeks post photothrombotic ischemic stroke in rats.

Materials And Methods: FTIR imaging spectroscopy and transmission electron microscopy (TEM) techniques were applied to investigate brain tissue samples while hematoxylin and eosin (H&E) stained images of adjacent sections were prepared for comparison and examination the morphological changes post stroke.

Results: TEM results revealed shearing of myelin sheaths and loss of cell membrane, structure and integrity after ischemic stroke. FTIR results showed that ipsi-lesional PIZ and WM experienced reduction in total protein and total lipid content compared to contra-lesional hemisphere. The lipid/protein ratio reduced in PIZ and adjacent WM indicated lipid peroxidation, which results in lipid chain fragmentation and an increase in olefinic content. Protein structural change is observed in PIZ due to the shift from random coli and α-helical structures to β-sheet conformation.

Conclusion: FTIR imaging bio-spectroscopy provide novel biochemical information at sub-cellular levels that be difficult to be obtained by routine approaches. The results suggest that successful therapeutic strategy that is based on administration of anti-oxidant therapy, which could reduce and prevent neurotoxicity by scavenging the lipid peroxidation products. This approach will mitigate tissue damage in chronic ischemic period. FTIR imaging bio-spectroscopy can be used as a powerful tool and offer new approach in stroke and neurodegenerative diseases research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/brainsci9110293DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895834PMC
October 2019

Biophysical studies of the effect of high power ultrasound on the DNA solution.

Phys Med 2014 Mar 10;30(2):221-7. Epub 2013 Jul 10.

Faculty of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia.

Stability and molecular size of the DNA double helical structure were studied on an aqueous solution of DNA after exposure to high power doses of continuous wave ultrasound at frequency of 20 kHz. Thermal transition spectrophotometry (UV-melting), constant-field gel electrophoresis (CFGE), differential scanning calorimetry (DSC) and dielectric properties measurements were used to evaluate the ultrasound-induced changes in the DNA double helical structure. The thermal transition spectrophotometry (UV-melting) and differential scanning calorimetry (DSC) results showed that ultrasound power caused loss of DNA double helical structure and the DNA double strands melting temperature decreased as the ultrasound power increased, indicating a decrease in the stability of the double helical structure of DNA. The constant-field gel electrophoresis (CFGE) results showed that the molecular size of the DNA fragments decreased as the ultrasound power increased. The dielectric data in the frequency range from 20 Hz to 100 kHz for the native DNA showed that dispersion at frequency of about 500 Hz resulted from polarization induced by counterions. The decrease in the dielectric increment indicated a decrease in length of DNA molecule after exposure to ultrasound power.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2013.06.002DOI Listing
March 2014
-->