Publications by authors named "Carlos M Isales"

114 Publications

Nanostring-Based Identification of the Gene Expression Profile in Trigger Finger Samples.

Healthcare (Basel) 2021 Nov 20;9(11). Epub 2021 Nov 20.

Department of Orthopedics, Augusta University, Augusta, GA 30912, USA.

Trigger finger is a common yet vastly understudied fibroproliferative hand pathology, severely affecting patients' quality of life. Consistent trauma due to inadequate positioning within the afflicted finger's tendon/pulley system leads to cellular dysregulation and eventual fibrosis. While the genetic characteristics of the fibrotic tissue in the trigger finger have been studied, the pathways that govern the initiation and propagation of fibrosis are still unknown. The complete gene expression profile of the trigger finger has never been explored. Our study has used the Nanostring nCounter gene expression assay to investigate the molecular signaling involved in trigger finger pathogenesis. We collected samples from patients undergoing trigger finger ( = 4) release surgery and compared the gene expression to carpal tunnel tissue ( = 4). Nanostring nCounter analysis identified 165 genes that were differentially regulated; 145 of these genes were upregulated, whereas 20 genes were downregulated. We found that several collagen genes were significantly upregulated, and a regulatory matrix metalloproteinase (MMP), MMP-3, was downregulated. Bioinformatic analysis revealed that several known signaling pathways were dysregulated, such as the TGF-β1 and Wnt signaling pathways. We also found several novel signaling pathways (e.g., PI3K, MAPK, JAK-STAT, and Notch) differentially regulated in trigger finger. The outcome of our study helps in understanding the molecular signaling pathway involved in the pathogenesis of the trigger finger.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/healthcare9111592DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8619339PMC
November 2021

The Glucocorticoid Receptor in Osterix-Expressing Cells Regulates Bone Mass, Bone Marrow Adipose Tissue, and Systemic Metabolism in Female Mice During Aging.

J Bone Miner Res 2021 Nov 8. Epub 2021 Nov 8.

Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA.

Hallmarks of aging-associated osteoporosis include bone loss, bone marrow adipose tissue (BMAT) expansion, and impaired osteoblast function. Endogenous glucocorticoid levels increase with age, and elevated glucocorticoid signaling, associated with chronic stress and dysregulated metabolism, can have a deleterious effect on bone mass. Canonical glucocorticoid signaling through the glucocorticoid receptor (GR) was recently investigated as a mediator of osteoporosis during the stress of chronic caloric restriction. To address the role of the GR in an aging-associated osteoporotic phenotype, the current study utilized female GR conditional knockout (GR-CKO; GR :Osx-Cre+) mice and control littermates on the C57BL/6 background aged to 21 months and studied in comparison to young (3- and 6-month-old) mice. GR deficiency in Osx-expressing cells led to low bone mass and BMAT accumulation that persisted with aging. Surprisingly, however, GR-CKO mice also exhibited alterations in muscle mass (reduced % lean mass and soleus fiber size), accompanied by reduced voluntary physical activity, and also exhibited higher whole-body metabolic rate and elevated blood pressure. Moreover, increased lipid storage was observed in GR-CKO osteoblastic cultures in a glucocorticoid-dependent fashion despite genetic deletion of the GR, and could be reversed via pharmacological inhibition of the mineralocorticoid receptor (MR). These findings provide evidence of a role for the GR (and possibly the MR) in facilitating healthy bone maintenance with aging in females. The effects of GR-deficient bone on whole-body physiology also demonstrate the importance of bone as an endocrine organ and suggest evidence for compensatory mechanisms that facilitate glucocorticoid signaling in the absence of osteoblastic GR function; these represent new avenues of research that may improve understanding of glucocorticoid signaling in bone toward the development of novel osteogenic agents. © 2021 American Society for Bone and Mineral Research (ASBMR).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.4468DOI Listing
November 2021

Renal Contributions to Age-Related Changes in Mineral Metabolism.

JBMR Plus 2021 Oct 3;5(10):e10517. Epub 2021 Jun 3.

Department of Neuroscience and Regenerative Medicine Augusta University Augusta GA USA.

Aging results in a general decline in function in most systems. This is particularly true with respect to the skeleton and renal systems, impacting mineral homeostasis. Calcium and phosphate regulation requires tight coordination among the intestine, bone, parathyroid gland, and kidney. The role of the intestine is to absorb calcium and phosphate from the diet. The bone stores or releases calcium and phosphate depending on the body's needs. In response to low plasma ionized calcium concentration, the parathyroid gland produces parathyroid hormone, which modulates bone turnover. The kidney reabsorbs or excretes the minerals and serves as the final regulator of plasma concentration. Many hormones are involved in this process in addition to parathyroid hormone, including fibroblast growth factor 23 produced by the bone and calcitriol synthesized by the kidney. Sclerostin, calcitonin, osteoprotegerin, and receptor activator of nuclear factor-κB ligand also contribute to tissue-specific regulation. Changes in the function of organs due to aging or disease can perturb this balance. During aging, the intestine cannot absorb calcium efficiently due to decreased expression of key proteins. In the bone, the balance between bone formation and bone resorption tends toward the latter in older individuals. The kidney may not filter blood as efficiently in the later decades of life, and the expression of certain proteins necessary for mineral homeostasis declines with age. These changes often lead to dysregulation of organismal mineral homeostasis. This review will focus on how mineral homeostasis is impacted by aging with a particular emphasis on the kidney's role in this process. © 2021 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm4.10517DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520061PMC
October 2021

Characterization of Differentially Expressed miRNAs by CXCL12/SDF-1 in Human Bone Marrow Stromal Cells.

Biomol Concepts 2021 Oct 13;12(1):132-143. Epub 2021 Oct 13.

Department of Orthopedics, Augusta University, Augusta, GA.

Stromal cell-derived factor 1 (SDF-1) is known to influence bone marrow stromal cell (BMSC) migration, osteogenic differentiation, and fracture healing. We hypothesize that SDF-1 mediates some of its effects on BMSCs through epigenetic regulation, specifically via microRNAs (miRNAs). MiRNAs are small non-coding RNAs that target specific mRNA and prevent their translation. We performed global miRNA analysis and determined several miRNAs were differentially expressed in response to SDF-1 treatment. Gene Expression Omnibus (GEO) dataset analysis showed that these miRNAs play an important role in osteogenic differentiation and fracture healing. KEGG and GO analysis indicated that SDF-1 dependent miRNAs changes affect multiple cellular pathways, including fatty acid biosynthesis, thyroid hormone signaling, and mucin-type O-glycan biosynthesis pathways. Furthermore, bioinformatics analysis showed several miRNAs target genes related to stem cell migration and differentiation. This study's findings indicated that SDF-1 induces some of its effects on BMSCs function through miRNA regulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1515/bmc-2021-0015DOI Listing
October 2021

Tryptophan-Kynurenine Pathway in COVID-19-Dependent Musculoskeletal Pathology: A Minireview.

Mediators Inflamm 2021 5;2021:2911578. Epub 2021 Oct 5.

Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), affecting multiple organ systems, including the respiratory tract and lungs. Several studies have reported that the tryptophan-kynurenine pathway is altered in COVID-19 patients. The tryptophan-kynurenine pathway plays a vital role in regulating inflammation, metabolism, immune responses, and musculoskeletal system biology. In this minireview, we surmise the effects of the kynurenine pathway in COVID-19 patients and how this pathway might impact muscle and bone biology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2021/2911578DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492288PMC
October 2021

Alteration in Nasopharyngeal Microbiota Profile in Aged Patients with COVID-19.

Diagnostics (Basel) 2021 Sep 5;11(9). Epub 2021 Sep 5.

Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA.

Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is an infectious virus that causes coronavirus disease 2019 (COVID-19) transmitted mainly through droplets and aerosol affecting the respiratory tract and lungs. Little is known regarding why some individuals are more susceptible than others and develop severe symptoms. In this study, we analyzed the nasopharyngeal microbiota profile of aged patients with COVID-19 (asymptomatic vs. symptomatic) vs. healthy individuals. We examined the nasopharynx swab of 84 aged-matched patients, out of which 27 were negative asymptomatic (NegA), 30 were positive asymptomatic (PA), and 27 patients were positive symptomatic (PSY). Our analysis revealed the presence of abundant Cyanobacterial taxa at phylum level in PA (-value = 0.0016) and PSY (-value = 0.00038) patients along with an upward trend in the population of Litoricola, Amylibacter, Balneola, and Aeromonas at the genus level. Furthermore, to know the relationship between the nasal microbiota composition and severity of COVID-19, we compared PA and PSY groups. Our data show that the nasal microbiota of PSY patients was significantly enriched with the signatures of two bacterial taxa: Cutibacterium (-value = 0.045) and Lentimonas (-value = 0.007. Furthermore, we also found a significantly lower abundance of five bacterial taxa, namely: Prevotellaceae (-value = 7 × 10), Luminiphilus (-value = 0.027), Flectobacillus (-value = 0.027), Comamonas (-value = 0.048), and Jannaschia (-value = 0.012) in PSY patients. The dysbiosis of the nasal microbiota in COVID-19 positive patients might have a role in contributing to the severity of COVID-19. The findings of our study show that there is a strong correlation between the composition of the nasal microbiota and COVID-19 severity. Further studies are needed to validate our finding in large-scale samples and to correlate immune response (cytokine Strome) and nasal microbiota to identify underlying mechanisms and develop therapeutic strategies against COVID-19.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/diagnostics11091622DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467337PMC
September 2021

Age-associated changes in microRNAs affect the differentiation potential of human mesenchymal stem cells: Novel role of miR-29b-1-5p expression.

Bone 2021 12 14;153:116154. Epub 2021 Aug 14.

Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America. Electronic address:

Age-associated osteoporosis is widely accepted as involving the disruption of osteogenic stem cell populations and their functioning. Maintenance of the local bone marrow (BM) microenvironment is critical for regulating proliferation and differentiation of the multipotent BM mesenchymal stromal/stem cell (BMSC) population with age. The potential role of microRNAs (miRNAs) in modulating BMSCs and the BM microenvironment has recently gained attention. However, miRNAs expressed in rapidly isolated BMSCs that are naïve to the non-physiologic standard tissue culture conditions and reflect a more accurate in vivo profile have not yet been reported. Here we directly isolated CD271 positive (+) BMSCs within hours from human surgical BM aspirates without culturing and performed microarray analysis to identify the age-associated changes in BMSC miRNA expression. One hundred and two miRNAs showed differential expression with aging. Target prediction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the up-regulated miRNAs targeting genes in bone development pathways were considerably enriched. Among the differentially up-regulated miRNAs the novel passenger strand miR-29b-1-5p was abundantly expressed as a mature functional miRNA with aging. This suggests a critical arm-switching mechanism regulates the expression of the miR-29b-1-5p/3p pair shifting the normally degraded arm, miR-29b-1-5p, to be the dominantly expressed miRNA of the pair in aging. The normal guide strand miR-29b-1-3p is known to act as a pro-osteogenic miRNA. On the other hand, overexpression of the passenger strand miR-29b-1-5p in culture-expanded CD271+ BMSCs significantly down-regulated the expression of stromal cell-derived factor 1 (CXCL12)/ C-X-C chemokine receptor type 4 (SDF-1(CXCL12)/CXCR4) axis and other osteogenic genes including bone morphogenetic protein-2 (BMP-2) and runt-related transcription factor 2 (RUNX2). In contrast, blocking of miR-29b-1-5p function using an antagomir inhibitor up-regulated expression of BMP-2 and RUNX2 genes. Functional assays confirmed that miR-29b-1-5p negatively regulates BMSC osteogenesis in vitro. These novel findings provide evidence of a pathogenic anti-osteogenic role for miR-29b-1-5p and other miRNAs in age-related defects in osteogenesis and bone regeneration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2021.116154DOI Listing
December 2021

A Tryptophan-Deficient Diet Induces Gut Microbiota Dysbiosis and Increases Systemic Inflammation in Aged Mice.

Int J Mol Sci 2021 May 8;22(9). Epub 2021 May 8.

Department of Medicine, Augusta University, Augusta, GA 30912, USA.

The gut microflora is a vital component of the gastrointestinal (GI) system that regulates local and systemic immunity, inflammatory response, the digestive system, and overall health. Older people commonly suffer from inadequate nutrition or poor diets, which could potentially alter the gut microbiota. The essential amino acid (AA) tryptophan (TRP) is a vital diet component that plays a critical role in physiological stress responses, neuropsychiatric health, oxidative systems, inflammatory responses, and GI health. The present study investigates the relationship between varied TRP diets, the gut microbiome, and inflammatory responses in an aged mouse model. We fed aged mice either a TRP-deficient (0.1%), TRP-recommended (0.2%), or high-TRP (1.25%) diet for eight weeks and observed changes in the gut bacterial environment and the inflammatory responses via cytokine analysis (IL-1a, IL-6, IL-17A, and IL-27). The mice on the TRP-deficient diets showed changes in their bacterial abundance of Coriobacteriia class, genus, Lachnospiraceae family, species, sp genus, and genus. Further, these mice showed significant increases in IL-6, IL-17A, and IL-1a and decreased IL-27 levels. These data suggest a direct association between dietary TRP content, the gut microbiota microenvironment, and inflammatory responses in aged mice models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22095005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125914PMC
May 2021

Kynurenine induces an age-related phenotype in bone marrow stromal cells.

Mech Ageing Dev 2021 04 22;195:111464. Epub 2021 Feb 22.

Department of Medicine, Augusta University, Augusta, GA, United States; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States; Center for Healthy Aging, Augusta University, Augusta, GA, United States. Electronic address:

Advanced age is one of the important contributing factors for musculoskeletal deterioration. Although the exact mechanism behind this degeneration is unknown, it has been previously established that nutritional signaling plays a vital role in musculoskeletal pathophysiology. Our group established the vital role of the essential amino acid, tryptophan, in aging musculoskeletal health. With advanced age, inflammatory factors activate indoleamine 2,3-dioxygenase (IDO1) and accumulate excessive intermediate tryptophan metabolites such as Kynurenine (KYN). With age, Kynurenine accumulates and suppresses osteogenic differentiation, impairs autophagy, promotes early senescence, and alters cellular bioenergetics of bone marrow stem cells. Recent studies have shown that Kynurenine negatively impacts bone marrow stromal cells (BMSCs) and, consequently, promotes bone loss. Overall, understanding the mechanism behind BMSCs losing their ability for osteogenic differentiation can provide insight into the prevention of osteoporosis and the development of targeted therapies. Therefore, in this article, we review Kynurenine and how it plays a vital role in BMSC dysfunction and bone loss with age.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mad.2021.111464DOI Listing
April 2021

Low level of Vitamin C and dysregulation of Vitamin C transporter might be involved in the severity of COVID-19 Infection.

Aging Dis 2021 Feb 1;12(1):14-26. Epub 2021 Feb 1.

1Department of Medicine, Augusta University, Augusta, GA 30912, USA.

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been spreading around the world at an exponential pace, leading to millions of individuals developing the associated disease called COVID-19. Due to the novel nature and the lack of immunity within humans, there has been a collective global effort to find effective treatments against the virus. This has led the scientific community to repurpose Food and Drug Administration (FDA) approved drugs with known safety profiles. Of the many possible drugs, vitamin C has been on the shortlist of possible interventions due to its beneficial role as an immune booster and inherent antioxidant properties. Within this manuscript, a detailed discussion regarding the intracellular function and inherent properties of vitamin C is conducted. It also provides a comprehensive review of published research pertaining to the differences in expression of the vitamin C transporter under several pathophysiologic conditions. Finally, we review recently published research investigating the efficacy of vitamin C administration in treating viral infection and life-threatening conditions. Overall, this manuscript aims to present existing information regarding the extent to which vitamin C can be an effective treatment for COVID-19 and possible explanations as to why it may work in some individuals but not in others.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.14336/AD.2020.0918DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801272PMC
February 2021

Sex-Specific Differences in Extracellular Vesicle Protein Cargo in Synovial Fluid of Patients with Osteoarthritis.

Life (Basel) 2020 Dec 10;10(12). Epub 2020 Dec 10.

Department of Pathology, Augusta University, Augusta, GA 30912, USA.

Women are at a significantly higher risk of developing osteoarthritis (OA) compared to males. The pathogenesis of osteoarthritis (OA) in women is poorly understood. Extracellular vesicles (EVs) have been shown to play an essential role in numerous signaling processes during the pathogenesis of age-related diseases via paracrine signaling. Molecular profiling of the synovial fluid-derived EVs cargo in women may help in the discovery of novel biomarkers and therapeutics for the treatment of OA in women. Previously, we reported that synovial fluid-derived EV miRNA cargo differs in a sex-specific manner. This study aims to characterize synovial fluid-derived EV protein cargo in OA patients. Our data showed sex-specific EVs protein content in OA. We found haptoglobin, orosomucoid, and ceruloplasmin significantly up-regulated, whereas apolipoprotein down-regulated in female OA EVs. In males, we discovered β-2-glycoprotein, and complement component 5 proteins significantly up-regulated and Spt-Ada-Gcn5 acetyltransferase (SAGA)-associated factor 29 down-regulated in male OA EVs. Database for Annotation, Visualization, and Integrated Discovery (DAVID) and QuickGO analysis revealed OA-specific protein involvement in several biological, molecular, and cellular pathways, specifically in inflammatory processes. In conclusion, synovial fluid EV protein content is altered in a sex-specific manner with OA, explaining the increased prevalence and severity of OA in women.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/life10120337DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763294PMC
December 2020

Kynurenine Promotes RANKL-Induced Osteoclastogenesis In Vitro by Activating the Aryl Hydrocarbon Receptor Pathway.

Int J Mol Sci 2020 Oct 26;21(21). Epub 2020 Oct 26.

Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA.

There is increasing evidence of the involvement of the tryptophan metabolite kynurenine (KYN) in disrupting osteogenesis and contributing to aging-related bone loss. Here, we show that KYN has an effect on bone resorption by increasing osteoclastogenesis. We have previously reported that in vivo treatment with KYN significantly increased osteoclast number lining bone surfaces. Here, we report the direct effect of KYN on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in Raw 264.7 macrophage cells, and we propose a potential mechanism for these KYN-mediated effects. We show that KYN/RANKL treatment results in enhancement of RANKL-induced osteoclast differentiation. KYN drives upregulation and activation of the key osteoclast transcription factors, c-fos and NFATc1 resulting in an increase in the number of multinucleated TRAP+ osteoclasts, and in hydroxyapatite bone resorptive activity. Mechanistically, the KYN receptor, aryl hydrocarbon receptor (AhR), plays an important role in the induction of osteoclastogenesis. We show that blocking AhR signaling using an AhR antagonist, or AhR siRNA, downregulates the KYN/RANKL-mediated increase in c-fos and NFATc1 and inhibits the formation of multinucleated TRAP + osteoclasts. Altogether, this work highlights that the novelty of the KYN and AhR pathways might have a potential role in helping to regulate osteoclast function with age and supports pursuing additional research to determine if they are potential therapeutic targets for the prevention or treatment of osteoporosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21217931DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662708PMC
October 2020

MicroRNAs are critical regulators of senescence and aging in mesenchymal stem cells.

Bone 2021 01 3;142:115679. Epub 2020 Oct 3.

Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America. Electronic address:

MicroRNAs (miRNAs) have recently come under scrutiny for their role in various age-related diseases. Similarly, cellular senescence has been linked to disease and aging. MicroRNAs and senescence likely play an intertwined role in driving these pathologic states. In this review, we present the connection between these two drivers of age-related disease concerning mesenchymal stem cells (MSCs). First, we summarize key miRNAs that are differentially expressed in MSCs and other musculoskeletal lineage cells during senescence and aging. Additionally, we also reviewed miRNAs that are regulated via traditional senescence-associated secretory phenotype (SASP) cytokines in MSC. Lastly, we summarize miRNAs that have been found to target components of the cell cycle arrest pathways inherently activated in senescence. This review attempts to highlight potential miRNA targets for regenerative medicine applications in age-related musculoskeletal disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2020.115679DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901145PMC
January 2021

The Role of Tryptophan Metabolites in Musculoskeletal Stem Cell Aging.

Int J Mol Sci 2020 Sep 11;21(18). Epub 2020 Sep 11.

Departments of Medicine, Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, USA.

Although aging is considered a normal process, there are cellular and molecular changes that occur with aging that may be detrimental to health. Osteoporosis is one of the most common age-related degenerative diseases, and its progression correlates with aging and decreased capacity for stem cell differentiation and proliferation in both men and women. Tryptophan metabolism through the kynurenine pathway appears to be a key factor in promoting bone-aging phenotypes, promoting bone breakdown and interfering with stem cell function and osteogenesis; however, little data is available on the impact of tryptophan metabolites downstream of kynurenine. Here we review available data on the impact of these tryptophan breakdown products on the body in general and, when available, the existing evidence of their impact on bone. A number of tryptophan metabolites (e.g., 3-hydroxykynurenine (3HKYN), kynurenic acid (KYNA) and anthranilic acid (AA)) have a detrimental effect on bone, decreasing bone mineral density (BMD) and increasing fracture risk. Other metabolites (e.g., 3-hydroxyAA, xanthurenic acid (XA), picolinic acid (PIA), quinolinic acid (QA), and NAD+) promote an increase in bone mineral density and are associated with lower fracture risk. Furthermore, the effects of other tryptophan breakdown products (e.g., serotonin) are complex, with either anabolic or catabolic actions on bone depending on their source. The mechanisms involved in the cellular actions of these tryptophan metabolites on bone are not yet fully known and will require further research as they are potential therapeutic targets. The current review is meant as a brief overview of existing English language literature on tryptophan and its metabolites and their effects on stem cells and musculoskeletal systems. The search terms used for a Medline database search were: kynurenine, mesenchymal stem cells, bone loss, tryptophan metabolism, aging, and oxidative stress.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21186670DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555967PMC
September 2020

COVID-19 Virulence in Aged Patients Might Be Impacted by the Host Cellular MicroRNAs Abundance/Profile.

Aging Dis 2020 May 9;11(3):509-522. Epub 2020 May 9.

1Department of Medicine, Augusta University, Augusta, GA, USA.

The World health organization (WHO) declared Coronavirus disease 2019 (COVID-19) a global pandemic and a severe public health crisis. Drastic measures to combat COVID-19 are warranted due to its contagiousness and higher mortality rates, specifically in the aged patient population. At the current stage, due to the lack of effective treatment strategies for COVID-19 innovative approaches need to be considered. It is well known that host cellular miRNAs can directly target both viral 3'UTR and coding region of the viral genome to induce the antiviral effect. In this study, we did analysis of human miRNAs targeting SARS (4 isolates) and COVID-19 (29 recent isolates from different regions) genome and correlated our findings with aging and underlying conditions. We found 848 common miRNAs targeting the SARS genome and 873 common microRNAs targeting the COVID-19 genome. Out of a total of 848 miRNAs from SARS, only 558 commonly present in all COVID-19 isolates. Interestingly, 315 miRNAs are unique for COVID-19 isolates and 290 miRNAs unique to SARS. We also noted that out of 29 COVID-19 isolates, 19 isolates have identical miRNA targets. The COVID-19 isolates, Netherland (EPI_ISL_422601), Australia (EPI_ISL_413214), and Wuhan (EPI_ISL_403931) showed six, four, and four unique miRNAs targets, respectively. Furthermore, GO, and KEGG pathway analysis showed that COVID-19 targeting human miRNAs involved in various age-related signaling and diseases. Recent studies also suggested that some of the human miRNAs targeting COVID-19 decreased with aging and underlying conditions. GO and KEGG identified impaired signaling pathway may be due to low abundance miRNA which might be one of the contributing factors for the increasing severity and mortality in aged individuals and with other underlying conditions. Further, and studies are needed to validate some of these targets and identify potential therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.14336/AD.2020.0428DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220294PMC
May 2020

Age-related increase of kynurenine enhances miR29b-1-5p to decrease both CXCL12 signaling and the epigenetic enzyme Hdac3 in bone marrow stromal cells.

Bone Rep 2020 Jun 23;12:100270. Epub 2020 Apr 23.

Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America.

Mechanisms leading to age-related reductions in bone formation and subsequent osteoporosis are still incompletely understood. We recently demonstrated that kynurenine (KYN), a tryptophan metabolite, accumulates in serum of aged mice and induces bone loss. Here, we report on novel mechanisms underlying KYN's detrimental effect on bone aging. We show that KYN is increased with aging in murine bone marrow mesenchymal stem cells (BMSCs). KYN reduces bone formation via modulating levels of CXCL12 and its receptors as well as histone deacetylase 3 (Hdac3). BMSCs responded to KYN by significantly decreasing mRNA expression levels of CXCL12 and its cognate receptors, CXCR4 and ACKR3, as well as downregulating osteogenic gene RUNX2 expression, resulting in a significant inhibition in BMSCs osteogenic differentiation. KYN's effects on these targets occur by increasing regulatory miRNAs that target osteogenesis, specifically miR29b-1-5p. Thus, KYN significantly upregulated the anti-osteogenic miRNA miR29b-1-5p in BMSCs, mimicking the up-regulation of miR-29b-1-5p in human and murine BMSCs with age. Direct inhibition of miR29b-1-5p by antagomirs rescued CXCL12 protein levels downregulated by KYN, while a miR29b-1-5p mimic further decreased CXCL12 levels. KYN also significantly downregulated mRNA levels of Hdac3, a target of miR-29b-1-5p, as well as its cofactor NCoR1. KYN is a ligand for the aryl hydrocarbon receptor (AhR). We hypothesized that AhR mediates KYN's effects in BMSCs. Indeed, AhR inhibitors (CH-223191 and 3',4'-dimethoxyflavone [DMF]) partially rescued secreted CXCL12 protein levels in BMSCs treated with KYN. Importantly, we found that treatment with CXCL12, or transfection with an miR29b-1-5p antagomir, downregulated the AhR mRNA level, while transfection with miR29b-1-5p mimic significantly upregulated its level. Further, CXCL12 treatment downregulated IDO, an enzyme responsible for generating KYN. Our findings reveal novel molecular pathways involved in KYN's age-associated effects in the bone microenvironment that may be useful translational targets for treating osteoporosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bonr.2020.100270DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7210406PMC
June 2020

Special issue: The kynurenine pathway in aging.

Exp Gerontol 2020 Mar 3;134:110895. Epub 2020 Mar 3.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2020.110895DOI Listing
March 2020

Picolinic acid, a tryptophan oxidation product, does not impact bone mineral density but increases marrow adiposity.

Exp Gerontol 2020 05 20;133:110885. Epub 2020 Feb 20.

Center for Healthy Aging, Augusta University, United States of America; Department of Medicine, Augusta University, United States of America; Department of Neuroscience and Regenerative Medicine, Augusta University, United States of America; Department of Orthopaedic Surgery, Augusta University, United States of America; Department of Cellular Biology and Anatomy, Augusta University, United States of America. Electronic address:

Tryptophan is an essential amino acid catabolized initially to kynurenine (kyn), an immunomodulatory metabolite that we have previously shown to promote bone loss. Kyn levels increase with aging and have also been associated with neurodegenerative disorders. Picolinic acid (PA) is another tryptophan metabolite downstream of kyn. However, in contrast to kyn, PA is reported to be neuroprotective and further, to promote osteogenesis in vitro. Thus, we hypothesized that PA might be osteoprotective in vivo. In an IACUC-approved protocol, we fed PA to aged (23-month-old) C57BL/6 mice for eight weeks. In an effort to determine potential interactions of PA with dietary protein we also fed PA in a low-protein diet (8%). The mice were divided into four groups: Control (18% dietary protein), +PA (700 ppm); Low-protein (8%), +PA (700 ppm). The PA feedings had no impact on mouse weight, body composition or bone density. At sacrifice bone and stem cells were collected for analysis, including μCT and RT-qPCR. Addition of PA to the diet had no impact on trabecular bone parameters. However, marrow adiposity was significantly increased in PA-fed mice, and in bone marrow stromal cells isolated from these mice increases in the expression of the lipid storage genes, Plin1 and Cidec, were observed. Thus, as a downstream metabolite of kyn, PA no longer showed kyn's detrimental effects on bone but instead appears to impact energy balance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2020.110885DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065047PMC
May 2020

Deletion of PPARγ in Mesenchymal Lineage Cells Protects Against Aging-Induced Cortical Bone Loss in Mice.

J Gerontol A Biol Sci Med Sci 2020 04;75(5):826-834

Center for Healthy Aging, Augusta University, Georgia.

Bone loss in aging is linked with chronic low-grade inflammation and the accumulation of marrowfat in animals and humans. Peroxisome proliferator-activated receptor gamma (PPARγ), an adipogenic regulator, plays key roles in these biological processes. However, studies of the roles of PPARγ in age-related bone loss and inflammation are lacking. We hypothesized that deletion of PPARγ in bone marrow mesenchymal lineage cells would reduce bone loss with aging, potentially through a reduction in fat-generated inflammatory responses and an increase in osteoblastic activity. In the present study, we show that mice deficient of PPARγ in Dermo1-expressing mesenchymal lineage cells (Dermo1-Cre:PPARγ fl/fl) have reduced fat mass and increased cortical bone thickness but that deficiency of PPARγ had limited effect on protection of trabecular bone with aging as demonstrated by dual-energy X-ray absorptiometry, µCT, and histomorphometric analyses. Conditional knockout of PPARγ reduced serum concentrations of adipokines, including adiponectin, resistin, and leptin, and reduced marrow stromal cell expression levels of inflammation-related genes. Inflammation genes involved in the interferon signaling pathway were reduced the most. These results demonstrate that disruption of the master adipogenic regulator, PPARγ, has a certain protective effect on aging-induced bone loss, suggesting that regulation of adipose function and modulation of interferon signaling are among the key mechanisms by which PPARγ regulates bone homeostasis during aging process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/glaa049DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164529PMC
April 2020

Kynurenine suppresses osteoblastic cell energetics in vitro and osteoblast numbers in vivo.

Exp Gerontol 2020 02 17;130:110818. Epub 2019 Dec 17.

Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA. Electronic address:

Aging is a progressive process associated with declining tissue function over time. Kynurenine, an oxidized metabolite of the essential amino acid tryptophan that increases in abundance with age, drives cellular processes of aging and dysfunction in many tissues, and recent work has focused on understanding the pathways involved in the harmful effects of kynurenine on bone. In this study, we sought to investigate the effects of controlled kynurenine administration on osteoblast bioenergetics, in vivo osteoblast abundance, and marrow fat accumulation. Additionally, as an extension of earlier studies with dietary administration of kynurenine, we investigated the effects of kynurenine on Hdac3 and NCoR1 expression and enzymatic deacetylase activity as potential mechanistic contributors to the effects of kynurenine on osteoblasts. Kynurenine administration suppressed cellular metabolism in osteoblasts at least in part through impaired mitochondrial respiration, and suppressed osteoblastic numbers in vivo with no concurrent effects on marrow adiposity. Deleterious effects of kynurenine treatment on osteoblasts were more pronounced in female models as compared to males. However, kynurenine treatment did not inhibit Hdac3's enzymatic deacetylase activity nor its repression of downstream glucocorticoid signaling. As such, future work will be necessary to determine the mechanisms by which increased kynurenine contributes to aging bone bioenergetics. The current study provides novel further support for the idea that kynurenine contributes to impaired osteoblastic function, and suggests that impaired matrix production by kynurenine-affected osteoblasts is attributed in part to impaired osteoblastic bioenergetics. As circulating kynurenine levels in increase with age, and human bone density inversely correlates with the serum kynurenine to tryptophan ratio, these mechanisms may have important relevance in the etiology and pathogenesis of osteoporosis in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2019.110818DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003726PMC
February 2020

Accumulation of kynurenine elevates oxidative stress and alters microRNA profile in human bone marrow stromal cells.

Exp Gerontol 2020 02 30;130:110800. Epub 2019 Nov 30.

Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America. Electronic address:

Kynurenine, a metabolite of tryptophan breakdown, has been shown to increase with age, and plays a vital role in a number of age-related pathophysiological changes, including bone loss. Accumulation of kynurenine in bone marrow stromal cells (BMSCs) has been associated with a decrease in cell proliferation and differentiation, though the exact mechanism by which kynurenine mediates these changes is poorly understood. MiRNAs have been shown to regulate BMSC function, and accumulation of kynurenine may alter the miRNA expression profile of BMSCs. The aim of this study was to identify differentially expressed miRNAs in human BMSCs in response to treatment with kynurenine, and correlate miRNAs function in BMSCs biology through bioinformatics analysis. Human BMSCs were cultured and treated with and without kynurenine, and subsequent miRNA isolation was performed. MiRNA array was performed to identify differentially expressed miRNA. Microarray analysis identified 50 up-regulated, and 36 down-regulated miRNAs in kynurenine-treated BMSC cultures. Differentially expressed miRNA included miR-1281, miR-330-3p, let-7f-5p, and miR-493-5p, which are important for BMSC proliferation and differentiation. KEGG analysis found up-regulated miRNA targeting glutathione metabolism, a pathway critical for removing oxidative species. Our data support that the kynurenine dependent degenerative effect is partially due to changes in the miRNA profile of BMSCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2019.110800DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6998036PMC
February 2020

Endogenous Glucocorticoid Signaling in the Regulation of Bone and Marrow Adiposity: Lessons from Metabolism and Cross Talk in Other Tissues.

Curr Osteoporos Rep 2019 12;17(6):438-445

Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA.

Purpose Of Review: The development of adiposity in the bone marrow, known as marrow adipose tissue (MAT), is often associated with musculoskeletal frailty. Glucocorticoids, which are a key component of the biological response to stress, affect both bone and MAT. These molecules signal through receptors such as the glucocorticoid receptor (GR), but the role of the GR in regulation of MAT is not yet clear from previous studies. The purpose of this review is to establish and determine the role of GR-mediated signaling in marrow adiposity by comparing and contrasting what is known against other energy-storing tissues like adipose tissue, liver, and muscle, to provide better insight into the regulation of MAT during times of metabolic stress (e.g., dietary challenges, aging).

Recent Findings: GR-mediated glucocorticoid signaling is critical for proper storage and utilization of lipids in cells such as adipocytes and hepatocytes and proteolysis in muscle, impacting whole-body composition, energy utilization, and homeostasis through a complex network of tissue cross talk between these systems. Loss of GR signaling in bone promotes increased MAT and decreased bone mass. GR-mediated signaling in the liver, adipose tissue, and muscle is critical for whole-body energy and metabolic homeostasis, and both similarities and differences in GR-mediated GC signaling in MAT as compared with these tissues are readily apparent. It is clear that GC-induced pathways work together through these tissues to affect systemic biology, and understanding the role of bone in these patterns of tissue cross talk may lead to a better understanding of MAT-bone biology that improves treatment strategies for frailty-associated diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11914-019-00554-6DOI Listing
December 2019

Decreased pericellular matrix production and selection for enhanced cell membrane repair may impair osteocyte responses to mechanical loading in the aging skeleton.

Aging Cell 2020 01 19;19(1):e13056. Epub 2019 Nov 19.

Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA.

Transient plasma membrane disruptions (PMD) occur in osteocytes with in vitro and in vivo loading, initiating mechanotransduction. The goal here was to determine whether osteocyte PMD formation or repair is affected by aging. Osteocytes from old (24 months) mice developed fewer PMD (-76% females, -54% males) from fluid shear than young (3 months) mice, and old mice developed fewer osteocyte PMD (-51%) during treadmill running. This was due at least in part to decreased pericellular matrix production, as studies revealed that pericellular matrix is integral to formation of osteocyte PMD, and aged osteocytes produced less pericellular matrix (-55%). Surprisingly, osteocyte PMD repair rate was faster (+25% females, +26% males) in osteocytes from old mice, and calcium wave propagation to adjacent nonwounded osteocytes was blunted, consistent with impaired mechanotransduction downstream of PMD in osteocytes with fast PMD repair in previous studies. Inducing PMD via fluid flow in young osteocytes in the presence of oxidative stress decreased postwounding cell survival and promoted accelerated PMD repair in surviving cells, suggesting selective loss of slower-repairing osteocytes. Therefore, as oxidative stress increases during aging, slower-repairing osteocytes may be unable to successfully repair PMD, leading to slower-repairing osteocyte death in favor of faster-repairing osteocyte survival. Since PMD are an important initiator of mechanotransduction, age-related decreases in pericellular matrix and loss of slower-repairing osteocytes may impair the ability of bone to properly respond to mechanical loading with bone formation. These data suggest that PMD formation and repair mechanisms represent new targets for improving bone mechanosensitivity with aging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/acel.13056DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974724PMC
January 2020

Kynurenine, a Tryptophan Metabolite That Increases with Age, Induces Muscle Atrophy and Lipid Peroxidation.

Oxid Med Cell Longev 2019 13;2019:9894238. Epub 2019 Oct 13.

Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.

The cellular and molecular mechanisms underlying loss of muscle mass with age (sarcopenia) are not well-understood; however, heterochronic parabiosis experiments show that circulating factors are likely to play a role. Kynurenine (KYN) is a circulating tryptophan metabolite that is known to increase with age and is a ligand of the aryl hydrocarbon receptor (Ahr). Here, we tested the hypothesis that KYN activation of Ahr plays a role in muscle loss with aging. Results indicate that KYN treatment of mouse and human myoblasts increased levels of reactive oxygen species (ROS) 2-fold and KYN treatment reduced muscle size and strength and increased muscle lipid peroxidation in young mice. PCR array data indicate that muscle fiber size reduction with KYN treatment reduces protein synthesis markers whereas ubiquitin ligase gene expression is not significantly increased. KYN is generated by the enzyme indoleamine 2,3-dioxygenase (IDO), and aged mice treated with the IDO inhibitor 1-methyl-D-tryptophan showed an increase in muscle fiber size and muscle strength. Small-molecule inhibition of Ahr , and Ahr knockout , did not prevent KYN-induced increases in ROS, suggesting that KYN can directly increase ROS independent of Ahr activation. Protein analysis identified very long-chain acyl-CoA dehydrogenase as a factor activated by KYN that may increase ROS and lipid peroxidation. Our data suggest that IDO inhibition may represent a novel therapeutic approach for the prevention of sarcopenia and possibly other age-associated conditions associated with KYN accumulation such as bone loss and neurodegeneration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2019/9894238DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815546PMC
May 2020

Stromal cell-derived factor-1 as a potential therapeutic target for osteoarthritis and rheumatoid arthritis.

Ther Adv Chronic Dis 2019 24;10:2040622319882531. Epub 2019 Oct 24.

Department of Orthopedic Surgery, Augusta University, 1459 Laney Walker, Augusta, GA, 30904, USA.

With age, joints become subject to chronic inflammatory processes that lead to degeneration of articular cartilage. Although multifactorial, cytokines have been shown to play a role in the pathogenesis of these chronic disease states. Stromal cell-derived factor 1 (SDF-1) is a chemokine that has been shown to be active in homeostatic mechanisms and developmental processes throughout the body, such as endochondral bone formation. SDF-1 plays a role in the transition from cartilage to bone. Although it has been shown to be a factor in normal development, it has also been shown to involve in the pathogenesis of rheumatoid arthritis (RA) and osteoarthritis (OA). In RA, SDF-1 has been shown to stimulate the recruitment of proinflammatory cells, as well as osteoclasts to the synovium, aiding in the facilitation of synovial degradation. Similarly, in OA, SDF-1 has been shown to regulate key proteins involved in the degradation of the cartilage of the joint. Because of its role in degenerative joint disease, SDF-1 has been investigated as a potential therapeutic target. Animal studies have been employing SDF-1 inhibitors, such as AMD3100 and T140, to study their effects on attenuating degenerative joint disease. These studies have shown promising results in slowing the progression of cartilage degradation and could potentially be used as therapeutic target for humans OA and RA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/2040622319882531DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820172PMC
October 2019

Elevated ceramides 18:0 and 24:1 with aging are associated with hip fracture risk through increased bone resorption.

Aging (Albany NY) 2019 11 1;11(21):9388-9404. Epub 2019 Nov 1.

Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.

We assessed whether circulating ceramides, which play a role in a number of degenerative changes with aging, significantly differed according to fragility hip fracture (HF) status. We also performed a human study using bone marrow (BM) aspirates, directly reflecting the bone microenvironment, in addition to experiments. Peripheral blood and BM samples were simultaneously collected from 74 patients 65 years or older at hip surgery for either HF ( = 28) or for other causes ( = 46). Ceramides were measured by liquid chromatography-tandem mass spectrometry. Age was correlated positively with circulating C16:0, C18:0, and C24:1 ceramide levels. Patients with fragility HF had 21.3%, 49.5%, 34.3%, and 22.5% higher plasma C16:0, C18:0, C18:1, and C24:1 ceramide levels, respectively, than those without HF. Higher C16:0, C18:0, C18:1, and C24:1 ceramide levels were positively related to bone resorption markers in both blood and BM samples. Furthermore, studies showed that C18:0 and C24:1 ceramides directly increased osteoclastogenesis, bone resorption, and expression levels of osteoclast differentiation markers. These results suggested that the association of increased ceramides, especially C18:0 and C24:1, with adverse bone phenotypes in elderly people could be explained mainly by the increase in osteoclastogenesis and bone resorption.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/aging.102389DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874435PMC
November 2019

MicroRNA-141-3p Negatively Modulates SDF-1 Expression in Age-Dependent Pathophysiology of Human and Murine Bone Marrow Stromal Cells.

J Gerontol A Biol Sci Med Sci 2019 08;74(9):1368-1374

Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Georgia.

Stromal cell-derived factor-1 (SDF-1 or CXCL12) is a cytokine secreted by cells including bone marrow stromal cells (BMSCs). SDF-1 plays a vital role in BMSC migration, survival, and differentiation. Our group previously reported the role of SDF-1 in osteogenic differentiation in vitro and bone formation in vivo; however, our understanding of the post-transcriptional regulatory mechanism of SDF-1 remains poor. MicroRNAs are small noncoding RNAs that post-transcriptionally regulate the messenger RNAs (mRNAs) of protein-coding genes. In this study, we aimed to investigate the impact of miR-141-3p on SDF-1 expression in BMSCs and its importance in the aging bone marrow (BM) microenvironment. Our data demonstrated that murine and human BMSCs expressed miR-141-3p that repressed SDF-1 gene expression at the functional level (luciferase reporter assay) by targeting the 3'-untranslated region of mRNA. We also found that transfection of miR-141-3p decreased osteogenic markers in human BMSCs. Our results demonstrate that miR-141-3p expression increases with age, while SDF-1 decreases in both the human and mouse BM niche. Taken together, these results support that miR-141-3p is a novel regulator of SDF-1 in bone cells and plays an important role in the age-dependent pathophysiology of murine and human BM niche.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/gly186DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696713PMC
August 2019

The glucocorticoid receptor in osteoprogenitors regulates bone mass and marrow fat.

J Endocrinol 2019 07 1. Epub 2019 Jul 1.

M McGee-Lawrence, Cellular Biology and Anatomy, Augusta University, Augusta, United States.

Excess fat within bone marrow is associated with lower bone density. Metabolic stressors such as chronic caloric restriction (CR) can exacerbate marrow adiposity, and increased glucocorticoid signaling and adrenergic signaling are implicated in this phenotype. The current study tested the role of glucocorticoid signaling in CR-induced stress by conditionally deleting the glucocorticoid receptor (GR) in bone marrow osteoprogenitors (Osx1-Cre) of mice subjected to CR and ad libitum diets. Conditional knockout of the GR (GR-CKO) reduced cortical and trabecular bone mass as compared to wildtype (WT) mice under both ad libitum and CR conditions. No interaction was detected between genotype and diet, suggesting that the GR is not required for CR-induced skeletal changes. The lower bone mass in GR-CKO mice, and the further suppression of bone by CR, resulted from suppressed bone formation. Interestingly, treatment with the -adrenergic receptor antagonist propranolol mildly but selectively improved metrics of cortical bone mass in GR-CKO mice during CR, suggesting interaction between adrenergic and glucocorticoid signaling pathways that affects cortical bone. GR-CKO mice dramatically increased marrow fat under both ad libitum and CR-fed conditions, and surprisingly propranolol treatment was unable to rescue CR-induced marrow fat in either WT or GR-CKO mice. Additionally, serum corticosterone levels were selectively elevated in GR-CKO mice with CR, suggesting the possibility of bone-hypothalamus-pituitary-adrenal crosstalk during metabolic stress. This work highlights the complexities of glucocorticoid and β-adrenergic signaling in stress-induced changes in bone mass, and the importance of GR function in suppressing marrow adipogenesis while maintaining healthy bone mass.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1530/JOE-19-0230DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938567PMC
July 2019

Monomethylfumarate protects against ovariectomy-related changes in body composition.

J Endocrinol 2019 07 1. Epub 2019 Jul 1.

C Isales, Neuroscience and Regenerative Medicine, Augusta University, Augusta, 30912, United States.

Osteoporosis, low bone mass that increases fracture susceptibility, affects approximately 75 million individuals in the United States, Europe and Japan, with the number of osteoporotic fractures expected to increase by more than 3-fold over the next 50 years. Bone mass declines with age, although the mechanisms for this decrease are unclear. Aging enhances production of reactive oxygen species, which can affect bone formation and breakdown. The multiple sclerosis drug Tecfidera contains dimethylfumarate, which is rapidly metabolized to monomethylfumarate (MMF); MMF is thought to function through nuclear factor erythroid-derived-2-like-2 (Nrf2), a transcription factor activated by oxidative stress which induces the expression of endogenous anti-oxidant systems. We hypothesized that MMF-elicited increases in anti-oxidants would inhibit osteopenia induced by ovariectomy, as a model of aging-related osteoporosis and high oxidative stress. We demonstrated that MMF activated Nrf2 and induced anti-oxidant Nrf2 target gene expression in bone marrow-derived mesenchymal stem cells. Sham-operated or ovariectomized adult female mice were fed chow with or without MMF and various parameters monitored. Ovariectomy produced the expected effects, decreasing bone mineral density and increasing body weight, fat mass, bone marrow adiposity and serum receptor activator of nuclear factor-kappa-B ligand (RANKL) levels. MMF decreased fat but not lean mass. MMF improved trabecular bone microarchitecture after adjustment for body weight, although the unadjusted data showed few differences; MMF also tended to increase adjusted cortical bone and to reduce bone marrow adiposity and serum RANKL levels. Because these results suggest the possibility that MMF might be beneficial for bone, further investigation seems warranted.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1530/JOE-18-0691DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938560PMC
July 2019

Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology.

Cytokine 2019 11 20;123:154783. Epub 2019 Jul 20.

Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States. Electronic address:

Musculoskeletal disorders are the leading cause of disability worldwide; two of the most prevalent of which are osteoporosis and sarcopenia. Each affect millions in the aging population across the world and the associated morbidity and mortality contributes to billions of dollars in annual healthcare cost. Thus, it is important to better understand the underlying pathologic mechanisms of the disease process. Regulatory chemokine, CXCL12, and its receptor, CXCR4, are recognized to be essential in the recruitment, localization, maintenance, development and differentiation of progenitor stem cells of the musculoskeletal system. CXCL12 signaling results in the development and functional ability of osteoblasts, osteoclasts, satellite cells and myoblasts critical to maintaining musculoskeletal homeostasis. Interestingly, one suggested pathologic mechanism of osteoporosis and sarcopenia is a decline in the regenerative capacity of musculoskeletal progenitor stem cells. Thus, because CXCL12 is critical to progenitor function, a disruption in the CXCL12 signaling axis might play a distinct role in these pathological processes. Therefore, in this article, we perform a review of CXCL12, its physiologic and pathologic function in bone and muscle, and potential targets for therapeutic development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cyto.2019.154783DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6948927PMC
November 2019
-->