Publications by authors named "Carlos Federico Marfil"

4 Publications

  • Page 1 of 1

Response to water deficit of semi-desert wild potato Solanum kurtzianum genotypes collected from different altitudes.

Plant Sci 2021 Jul 15;308:110911. Epub 2021 Apr 15.

Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina.

Drought-sensitive crops are threatened as a consequence of limited available water due to climate change. The cultivated potato (Solanum tuberosum) is susceptible to drought and within its wild relative species, Solanum kurtzianum is the Argentinian wild potato species best adapted to arid conditions. However, its physiological responses to water deficit (WD) are still missing. Within the distribution of S. kurtzianum, genotypes could be adapted to differential precipitation regimes. The aim of this work was to evaluate responses of three S. kurtzianum genotypes collected at 1100 (G1), 1900 (G2) and 2100 m a.s.l. (G3) to moderate and severe WD. Treatments were imposed since flowering and lasted 36 days. Yield components, morpho-physiological and biochemical responses; and phenotypic plasticity were evaluated. The three genotypes presented mechanisms to tolerate both WD treatments. G1 presented the lowest yield reduction under moderate WD, mainly through a rapid stomatal closure and a modest vegetative growth. The differences among genotypes suggest that local adaptation is taking place within its natural habitat. Also, G2 presented environmentally induced shifts in plasticity for stomatal length and carotenoids, suggesting that phenotypic plasticity has a role in acclimation of plants to WD until selection works.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2021.110911DOI Listing
July 2021

Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens.

Heredity (Edinb) 2021 Jan 16;126(1):50-62. Epub 2020 Aug 16.

IBAM (Instituto de Biología Agrícola de Mendoza), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.

DNA methylation can be environmentally modulated and plays a role in phenotypic plasticity. To understand the role of environmentally induced epigenetic variation and its dynamics in natural populations and ecosystems, it is relevant to place studies in a real-world context. Our experimental model is the wild potato Solanum kurtzianum, a close relative of the cultivated potato S. tuberosum. It was evaluated in its natural habitat, an arid Andean region in Argentina characterised by spatial and temporal environmental fluctuations. The dynamics of phenotypic and epigenetic variability (with Methyl Sensitive Amplified Polymorphism markers, MSAP) were assayed in three genotypes across three growing seasons. These genotypes were cultivated permanently and also reciprocally transplanted between experimental gardens (EG) differing in ca. 1000 m of altitude. In two seasons, the genotypes presented differential methylation patterns associated to the EG. In the reciprocal transplants, a rapid epigenomic remodelling occurred according to the growing season. Phenotypic plasticity, both spatial (between EGs within season) and temporal (between seasons), was detected. The epigenetic and phenotypic variability was positively correlated. The lack of an evident mitotic epigenetic memory would be a common response to short-term environmental fluctuations. Thus, the environmentally induced phenotypic and epigenetic variation could contribute to populations persistence through time. These results have implications for understanding the great ecological diversity of wild potatoes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41437-020-00355-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7853039PMC
January 2021

Epigenetic consequences of interploidal hybridisation in synthetic and natural interspecific potato hybrids.

New Phytol 2019 06 25;222(4):1981-1993. Epub 2019 Feb 25.

Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, U.N.Cuyo, CONICET, Mendoza, Argentina.

Interploidal hybridisation can generate changes in plant chromosome numbers, which might exert effects additional to the expected due to genome merger per se (that is genetic, epigenetic and phenotypic novelties). Wild potatoes are suitable to address this question in an evolutionary context. To this end, we performed genetic (AFLP and single sequence repeart (SSR)), epigenetic (MSAP), and cytological comparisons in: (1) natural populations of the diploid cytotype of the hybrid taxonomic species Solanum × rechei (2n = 2×, 3×) and its parental species, the triploid cytotype of Solanum microdontum (2n = 2×, 3×) and Solanum kurtzianum (2n = 2×); and (2) newly synthesised intraploidal (2× × 2×) and interploidal (3× × 2×) S. microdontum × S. kurtzianum hybrids. Aneuploidy was detected in S. × rechei and the synthetic interploidal progeny; this phenomenon might have originated the significantly higher number of methylation changes observed in the interploidal vs the intraploidal hybrids. The wide epigenetic variability induced by interploidal hybridisation is consistent with the novel epigenetic pattern established in S. × rechei compared to its parental species in nature. These results suggest that aneuploid potato lineages can persist throughout the short term, and possibly medium term, and that differences in parental ploidy resulting in aneuploidy are an additional source of epigenetic variation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.15706DOI Listing
June 2019

Assessment of genetic and epigenetic changes in virus-free garlic (Allium sativum L.) plants obtained by meristem culture followed by in vitro propagation.

Plant Cell Rep 2016 Jan;35(1):129-41

Key Message: This is the first report assessing epigenetic variation in garlic. High genetic and epigenetic polymorphism during in vitro culture was detected.Sequencing of MSAP fragments revealed homology with ESTs. Garlic (Allium sativum) is a worldwide crop of economic importance susceptible to viral infections that can cause significant yield losses. Meristem tissue culture is the most employed method to sanitize elite cultivars.Often the virus-free garlic plants obtained are multiplied in vitro (micro propagation). However, it was reported that micro-propagation frequently produces somaclonal variation at the phenotypic level, which is an undesirable trait when breeders are seeking to maintain varietal stability. We employed amplification fragment length polymorphism and methylation sensitive amplified polymorphism (MSAP) methodologies to assess genetic and epigenetic modifications in two culture systems: virus-free plants obtained by meristem culture followed by in vitro multiplication and field culture. Our results suggest that garlic exhibits genetic and epigenetic polymorphism under field growing conditions. However, during in vitro culture system both kinds of polymorphisms intensify indicating that this system induces somaclonal variation. Furthermore, while genetic changes accumulated along the time of in vitro culture, epigenetic polymorphism reached the major variation at 6 months and then stabilize, being demethylation and CG methylation the principal conversions.Cloning and sequencing differentially methylated MSAP fragments allowed us to identify coding and unknown sequences of A. sativum, including sequences belonging to LTR Gypsy retrotransposons. Together, our results highlight that main changes occur in the initial 6 months of micro propagation. For the best of our knowledge, this is the first report on epigenetic assessment in garlic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-015-1874-xDOI Listing
January 2016
-->