Publications by authors named "Carissa Klanseck"

3 Publications

  • Page 1 of 1

Structural determinants of protocadherin-15 mechanics and function in hearing and balance perception.

Proc Natl Acad Sci U S A 2020 10 22;117(40):24837-24848. Epub 2020 Sep 22.

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210;

The vertebrate inner ear, responsible for hearing and balance, is able to sense minute mechanical stimuli originating from an extraordinarily broad range of sound frequencies and intensities or from head movements. Integral to these processes is the tip-link protein complex, which conveys force to open the inner-ear transduction channels that mediate sensory perception. Protocadherin-15 and cadherin-23, two atypically large cadherins with 11 and 27 extracellular cadherin (EC) repeats, are involved in deafness and balance disorders and assemble as parallel homodimers that interact to form the tip link. Here we report the X-ray crystal structure of a protocadherin-15 + cadherin-23 heterotetrameric complex at 2.9-Å resolution, depicting a parallel homodimer of protocadherin-15 EC1-3 molecules forming an antiparallel complex with two cadherin-23 EC1-2 molecules. In addition, we report structures for 10 protocadherin-15 fragments used to build complete high-resolution models of the monomeric protocadherin-15 ectodomain. Molecular dynamics simulations and validated crystal contacts are used to propose models for the complete extracellular protocadherin-15 parallel homodimer and the tip-link bond. Steered molecular dynamics simulations of these models suggest conditions in which a structurally diverse and multimodal protocadherin-15 ectodomain can act as a stiff or soft gating spring. These results reveal the structural determinants of tip-link-mediated inner-ear sensory perception and elucidate protocadherin-15's structural and adhesive properties relevant in disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1920444117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547225PMC
October 2020

Active Genetic Neutralizing Elements for Halting or Deleting Gene Drives.

Mol Cell 2020 10 18;80(2):246-262.e4. Epub 2020 Sep 18.

Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA; Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA. Electronic address:

CRISPR-Cas9-based gene drive systems possess the inherent capacity to spread progressively throughout target populations. Here we describe two self-copying (or active) guide RNA-only genetic elements, called e-CHACRs and ERACRs. These elements use Cas9 produced in trans by a gene drive either to inactivate the cas9 transgene (e-CHACRs) or to delete and replace the gene drive (ERACRs). e-CHACRs can be inserted at various genomic locations and carry two or more gRNAs, the first copying the e-CHACR and the second mutating and inactivating the cas9 transgene. Alternatively, ERACRs are inserted at the same genomic location as a gene drive, carrying two gRNAs that cut on either side of the gene drive to excise it. e-CHACRs efficiently inactivate Cas9 and can drive to completion in cage experiments. Similarly, ERACRs, particularly those carrying a recoded cDNA-restoring endogenous gene activity, can drive reliably to fully replace a gene drive. We compare the strengths of these two systems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2020.09.003DOI Listing
October 2020

Efficient allelic-drive in Drosophila.

Nat Commun 2019 04 9;10(1):1640. Epub 2019 Apr 9.

Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA.

Gene-drive systems developed in several organisms result in super-Mendelian inheritance of transgenic insertions. Here, we generalize this "active genetic" approach to preferentially transmit allelic variants (allelic-drive) resulting from only a single or a few nucleotide alterations. We test two configurations for allelic-drive: one, copy-cutting, in which a non-preferred allele is selectively targeted for Cas9/guide RNA (gRNA) cleavage, and a more general approach, copy-grafting, that permits selective inheritance of a desired allele located in close proximity to the gRNA cut site. We also characterize a phenomenon we refer to as lethal-mosaicism that dominantly eliminates NHEJ-induced mutations and favors inheritance of functional cleavage-resistant alleles. These two efficient allelic-drive methods, enhanced by lethal mosaicism and a trans-generational drive process we refer to as "shadow-drive", have broad practical applications in improving health and agriculture and greatly extend the active genetics toolbox.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-09694-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456580PMC
April 2019
-->