Publications by authors named "Caleb M Brown"

9 Publications

  • Page 1 of 1

Dietary palaeoecology of an Early Cretaceous armoured dinosaur (Ornithischia; Nodosauridae) based on floral analysis of stomach contents.

R Soc Open Sci 2020 Jun 3;7(6):200305. Epub 2020 Jun 3.

Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2.

The exceptionally well-preserved holotype of the armoured dinosaur (Ornithischia; Nodosauridae) from the Early Cretaceous (Clearwater Formation) of northern Alberta preserves a distinct mass within the abdominal cavity. Fourteen independent criteria (including: co-allochthony, anatomical position, gastroliths) support the interpretation of this mass as ingested stomach contents-a cololite. Palynomorphs in the cololite are a subset of the more diverse external sample. Analysis of the cololite documents well-preserved plant material dominated by leaf tissue (88%), including intact sporangia, leaf cross-sections and cuticle, but also including stems, wood and charcoal. The leaf fraction is dominated (85%) by leptosporangiate ferns (subclass Polypodiidae), with low cycad-cycadophyte (3%) and trace conifer foliage. These data represent the most well-supported and detailed direct evidence of diet in an herbivorous dinosaur. Details of the dietary palaeoecology of this nodosaur are revealed, including: selective feeding on ferns; preferential ingestion of leptosporangiate ferns to the exclusion of Osmundaceae and eusporangiate ferns such as Marattiaceae; and incidental consumption of cycad-cycadophyte and conifer leaves. The presence of significant (6%) charcoal may represent the dietary use of recently burned conifer forest undergoing fern succession, early evidence of a fire succession ecology, as is associated with many modern large herbivores.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsos.200305DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353971PMC
June 2020

Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities.

Elife 2019 06 18;8. Epub 2019 Jun 18.

Department of Geosciences, Princeton University, Princeton, United States.

Fossils were thought to lack original organic molecules, but chemical analyses show that some can survive. Dinosaur bone has been proposed to preserve collagen, osteocytes, and blood vessels. However, proteins and labile lipids are diagenetically unstable, and bone is a porous open system, allowing microbial/molecular flux. These 'soft tissues' have been reinterpreted as biofilms. Organic preservation versus contamination of dinosaur bone was examined by freshly excavating, with aseptic protocols, fossils and sedimentary matrix, and chemically/biologically analyzing them. Fossil 'soft tissues' differed from collagen chemically and structurally; while degradation would be expected, the patterns observed did not support this. 16S rRNA amplicon sequencing revealed that dinosaur bone hosted an abundant microbial community different from lesser abundant communities of surrounding sediment. Subsurface dinosaur bone is a relatively fertile habitat, attracting microbes that likely utilize inorganic nutrients and complicate identification of original organic material. There exists potential post-burial taphonomic roles for subsurface microorganisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.46205DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581507PMC
June 2019

Bite marks on the frill of a juvenile from the Late Cretaceous Dinosaur Provincial Park Formation, Alberta, Canada.

PeerJ 2018 12;6:e5748. Epub 2018 Oct 12.

Royal Tyrrell Museum of Palaeontology, Drumheller, AB, Canada.

Bite marks on bones can provide critical information about interactions between carnivores and animals they consumed (or attempted to) in the fossil record. Data from such interactions is somewhat sparse and is hampered by a lack of records in the scientific literature. Here, we present a rare instance of feeding traces on the frill of a juvenile ceratopsian dinosaur from the late Campanian Dinosaur Park Formation of Alberta. It is difficult to determine the likely tracemaker(s) but the strongest candidate is a small-bodied theropod such as a dromaeosaur or juvenile tyrannosaur. This marks the first documented case of carnivore consumption of a juvenile ceratopsid, but may represent scavenging as opposed to predation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7717/peerj.5748DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6188009PMC
October 2018

Long-horned Ceratopsidae from the Foremost Formation (Campanian) of southern Alberta.

Authors:
Caleb M Brown

PeerJ 2018 16;6:e4265. Epub 2018 Jan 16.

Royal Tyrrell Museum of Palaeontology, Drumheller, Alberta, Canada.

The horned Ceratopsidae represent one of the last radiations of dinosaurs, and despite a decade of intense work greatly adding to our understanding of this diversification, their early evolution is still poorly known. Here, two postorbital horncores from the upper Foremost Formation (Campanian) of Alberta are described, and at ∼78.5 Ma represent some of the geologically oldest ceratopsid material. The larger of these specimens is incorporated into a fused supraorbital complex, and preserves a massive, straight, postorbital horncore that is vertical in lateral view, but canted dorsolaterally in rostral view. Medially, the supracranial sinus is composed of a small, restricted caudal chamber, and a large rostral chamber that forms the cornual diverticulum. This morphology is distinct from that of the long-horned Chasmosaurinae, and similar to, but still different from, those of younger Centrosaurinae taxa. The smaller specimen represents an ontogenetically younger individual, and although showing consistent morphology to the larger specimen, is less taxonomically useful. Although not certain, these postorbital horns may be referable to a long-horned basal (i.e., early-branching, non-pachyrhinosaurini, non-centrosaurini) centrosaurine, potentially the contemporaneous , largely known from the parietosquamosal frill. These specimens indicate the morphology of the supracranial sinus in early, long-horned members of the Ceratopsidae, and add to our understanding of the evolution of the cranial display structures in this iconic dinosaur clade.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7717/peerj.4265DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774296PMC
January 2018

An exceptionally preserved armored dinosaur reveals the morphology and allometry of osteoderms and their horny epidermal coverings.

Authors:
Caleb M Brown

PeerJ 2017 29;5:e4066. Epub 2017 Nov 29.

Royal Tyrrell Museum of Palaeontology, Drumheller, AB, Canada.

Although the evolution and function of "exaggerated" bony projections in ornithischian dinosaurs has been subject to significant debate recently, our understanding of the structure and morphology of their epidermal keratinized coverings is greatly limited. The holotype of , a new nodosaurid ankylosaur, preserves osteoderms and extensive epidermal structures (dark organic residues), in anatomic position across the entire precaudal length. Contrasting previous specimens, organic epiosteodermal scales, often in the form of horn-like (keratinous) sheaths, cap and exaggerate nearly all osteoderms, allowing for morphometric and allometric analyses of both the bony osteoderms and their horny sheaths. A total of 172 osteoderms were quantified, with osteoderm spine length and height being positively allometric with respect to basal length and width. Despite tight correlations between the different measures amongst all other osteoderms, the large parascapular spines represent consistent outliers. Thickness and relative contribution of the keratinized epiosteodermal scales/sheaths varies greatly by region, ranging from 2% to 6% for posterior thoracics, to ∼25% (1.3×) for the parascapular spines-similar to horn sheaths in some bovid analogues. Relative to the bony cores, the horny portions of the spines are strongly positively allometric (slope = 2.3, CI = 1.8-2.8). Strong allometric scaling, species-specific morphology, and significant keratinous extension of the cervicoscapular spines is consistent with elaboration under socio-sexual selection. This marks the first allometric analysis of ornithischian soft tissues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7717/peerj.4066DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712211PMC
November 2017

An Exceptionally Preserved Three-Dimensional Armored Dinosaur Reveals Insights into Coloration and Cretaceous Predator-Prey Dynamics.

Curr Biol 2017 Aug 3;27(16):2514-2521.e3. Epub 2017 Aug 3.

Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 45 Carleton St., Cambridge, MA 02142, USA.

Predator-prey dynamics are an important evolutionary driver of escalating predation mode and efficiency, and commensurate responses of prey [1-3]. Among these strategies, camouflage is important for visual concealment, with countershading the most universally observed [4-6]. Extant terrestrial herbivores free of significant predation pressure, due to large size or isolation, do not exhibit countershading. Modern predator-prey dynamics may not be directly applicable to those of the Mesozoic due to the dominance of very large, visually oriented theropod dinosaurs [7]. Despite thyreophoran dinosaurs' possessing extensive dermal armor, some of the most extreme examples of anti-predator structures [8, 9], little direct evidence of predation on these and other dinosaur megaherbivores has been documented. Here we describe a new, exquisitely three-dimensionally preserved nodosaurid ankylosaur, Borealopelta markmitchelli gen. et sp. nov., from the Early Cretaceous of Alberta, which preserves integumentary structures as organic layers, including continuous fields of epidermal scales and intact horn sheaths capping the body armor. We identify melanin in the organic residues through mass spectroscopic analyses and observe lighter pigmentation of the large parascapular spines, consistent with display, and a pattern of countershading across the body. With an estimated body mass exceeding 1,300 kg, B. markmitchelli was much larger than modern terrestrial mammals that either are countershaded or experience significant predation pressure as adults. Presence of countershading suggests predation pressure strong enough to select for concealment in this megaherbivore despite possession of massive dorsal and lateral armor, illustrating a significant dichotomy between Mesozoic predator-prey dynamics and those of modern terrestrial systems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2017.06.071DOI Listing
August 2017

Dental Disparity and Ecological Stability in Bird-like Dinosaurs prior to the End-Cretaceous Mass Extinction.

Curr Biol 2016 05 21;26(10):1325-33. Epub 2016 Apr 21.

Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada; Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, ON M5S 2C6, Canada.

The causes, rate, and selectivity of the end-Cretaceous mass extinction continue to be highly debated [1-5]. Extinction patterns in small, feathered maniraptoran dinosaurs (including birds) are important for understanding extant biodiversity and present an enigma considering the survival of crown group birds (Neornithes) and the extinction of their close kin across the end-Cretaceous boundary [6]. Because of the patchy Cretaceous fossil record of small maniraptorans [7-12], this important transition has not been closely examined in this group. Here, we test the hypothesis that morphological disparity in bird-like dinosaurs was decreasing leading up to the end-Cretaceous mass extinction, as has been hypothesized in some dinosaurs [13, 14]. To test this, we examined tooth morphology, an ecological indicator in fossil reptiles [15-19], from over 3,100 maniraptoran teeth from four groups (Troodontidae, Dromaeosauridae, Richardoestesia, and cf. Aves) across the last 18 million years of the Cretaceous. We demonstrate that tooth disparity, a proxy for variation in feeding ecology, shows no significant decline leading up to the extinction event within any of the groups. Tooth morphospace occupation also remains static over this time interval except for increased size during the early Maastrichtian. Our data provide strong support that extinction within this group occurred suddenly after a prolonged period of ecological stability. To explain this sudden extinction of toothed maniraptorans and the survival of Neornithes, we propose that diet may have been an extinction filter and suggest that granivory associated with an edentulous beak was a key ecological trait in the survival of some lineages.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2016.03.039DOI Listing
May 2016

A new horned dinosaur reveals convergent evolution in cranial ornamentation in Ceratopsidae.

Curr Biol 2015 Jun 4;25(12):1641-8. Epub 2015 Jun 4.

Royal Tyrrell Museum of Palaeontology, Box 7500, Drumheller, AB T0J 0Y0, Canada.

Ceratopsid (horned) dinosaurs are an iconic group of large-bodied, quadrupedal, herbivorous dinosaurs that evolved in the Late Cretaceous and were largely restricted to western North America [1-5]. Ceratopsids are easily recognized by their cranial ornamentation in the form of nasal and postorbital horns and frill (capped by epiossifications); these structures show high morphological disparity and also represent the largest cranial display structures known to have evolved [2, 4]. Despite their restricted occurrence in time and space, this group has one of the best fossil records within Dinosauria, showing a rapid diversification in horn and frill morphology [1]. Here a new genus and species of chasmosaurine ceratopsid is described based on a nearly complete and three-dimensionally preserved cranium recovered from the uppermost St. Mary River Formation (Maastrichtian) of southwestern Alberta. Regaliceratops peterhewsi gen. et sp. nov. exhibits many unique characters of the frill and is characterized by a large nasal horncore, small postorbital horncores, and massive parietal epiossifications. Cranial morphology, particularly the epiossifications, suggests close affinity with the late Campanian/early Maastrichian taxon Anchiceratops, as well as with the late Maastrichtian taxon Triceratops. A median epiparietal necessitates a reassessment of epiossification homology and results in a more resolved phylogeny. Most surprisingly, Regaliceratops exhibits a suite of cranial ornamentations that are superficially similar to Campanian centrosaurines, indicating both exploration of novel display morphospace in Chasmosaurinae, especially Maastrichtian forms, and convergent evolution in horn morphology with the recently extinct Centrosaurinae. This marks the first time that evolutionary convergence in horn-like display structures has been demonstrated between dinosaur clades, similar to those seen in fossil and extant mammals [6].
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2015.04.041DOI Listing
June 2015

The oldest North American pachycephalosaurid and the hidden diversity of small-bodied ornithischian dinosaurs.

Nat Commun 2013 ;4:1828

Department of Natural History, Royal Ontario Museum, 100 Queens Park, Toronto, Ontario, Canada M5S 2C6.

Taphonomic biases dictate how organisms are represented in the fossil record, but their effect on studies of vertebrate diversity dynamics is poorly studied. In contrast to the high diversity and abundance of small-bodied animals in extant ecosystems, small-bodied dinosaurs are less common than their large-bodied counterparts, but it is unclear whether this reflects unique properties of dinosaurian ecosystems or relates to taphonomic biases. A new, fully domed pachycephalosaurid dinosaur, Acrotholus audeti, from the Santonian of Alberta predates incompletely domed taxa, and provides important new information on pachycephalosaur evolution and the completeness of the ornithischian fossil record. Here we provide the first empirical evidence that the diversity of small-bodied ornithischian dinosaurs is strongly underestimated based on ghost lineages and the high proportion of robust and diagnostic frontoparietal domes compared with other pachycephalosaur fossils. This suggests preservational biases have a confounding role in attempts to decipher vertebrate palaeoecology and diversity dynamics through the Mesozoic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms2749DOI Listing
December 2013