Publications by authors named "Bryan Harry Rahmat Suryanto"

2 Publications

  • Page 1 of 1

Liquid Crystal-Mediated 3D Printing Process to Fabricate Nano-Ordered Layered Structures.

ACS Appl Mater Interfaces 2021 Jun 10;13(24):28627-28638. Epub 2021 Jun 10.

School of Chemical Engineering, University of New South Wales (UNSW), Sydney 2052, New South Wales, Australia.

The emergence of three-dimensional (3D) printing promises a disruption in the design and on-demand fabrication of smart structures in applications ranging from functional devices to human organs. However, the scale at which 3D printing excels is within macro- and microlevels and principally lacks the spatial ordering of building blocks at nanolevels, which is vital for most multifunctional devices. Herein, we employ liquid crystal (LC) inks to bridge the gap between the nano- and microscales in a single-step 3D printing. The LC ink is prepared from mixtures of LCs of nanocellulose whiskers and large sheets of graphene oxide, which offers a highly ordered laminar organization not inherently present in the source materials. LC-mediated 3D printing imparts the fine-tuning required for the design freedom of architecturally layered systems at the nanoscale with intricate patterns within the 3D-printed constructs. This approach empowered the development of a high-performance humidity sensor composed of self-assembled lamellar organization of NC whiskers. We observed that the NC whiskers that are flat and parallel to each other in the laminar organization allow facile mass transport through the structure, demonstrating a significant improvement in the sensor performance. This work exemplifies how LC ink, implemented in a 3D printing process, can unlock the potential of individual constituents to allow macroscopic printing architectures with nanoscopic arrangements.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c05025DOI Listing
June 2021

Direct Hydrothermal Synthesis of Carbonaceous Silver Nanocables for Electrocatalytic Applications.

Small 2015 Aug 25;11(29):3557-67. Epub 2015 Mar 25.

School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.

This study demonstrates a facile but efficient hydrothermal method for the direct synthesis of both carbonaceous silver ([email protected] core-shell) nanocables and carbonaceous nanotubes under mild conditions (<180 °C). The carbonaceous tubes can be formed by removal of the silver cores via an etching process under temperature control (60-140 °C). The structure and composition are characterized using various advanced microscopic and spectroscopic techniques. The pertinent variables such as temperature, reaction time, and surfactants that can affect the formation and growth of the nanocables and nanotubes are investigated and optimized. It is found that cetyltrimethylammonium bromide plays multiple roles in the formation of [email protected] nanocables and carbonaceous nanotubes including: a shape controller for metallic Ag wires and [email protected] cables, a source of Br(-) ions to form insoluble AgBr and then Ag crystals, an etching agent of silver cores to form carbonaceous tubes, and an inducer to refill silver particles into the carbonaceous tubes to form core-shell structures. The formation mechanism of carbonaceous silver nanostructures depending upon temperature is also discussed. Finally, the electrocatalytic performance of the as-prepared [email protected] nanocables is assessed for the oxidation reduction reaction and found to be very active but much less costly than the commonly used platinum catalysts. The findings should be useful for designing and constructing carbonaceous-metal nanostructures with potential applications in conductive materials, catalysts, and biosensors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201401854DOI Listing
August 2015
-->