Publications by authors named "Bruno Biton"

7 Publications

  • Page 1 of 1

The RESOLUTE consortium: unlocking SLC transporters for drug discovery.

Authors:
Giulio Superti-Furga Daniel Lackner Tabea Wiedmer Alvaro Ingles-Prieto Barbara Barbosa Enrico Girardi Ulrich Goldmann Bettina Gürtl Kristaps Klavins Christoph Klimek Sabrina Lindinger Eva Liñeiro-Retes André C Müller Svenja Onstein Gregor Redinger Daniela Reil Vitaly Sedlyarov Gernot Wolf Matthew Crawford Robert Everley David Hepworth Shenping Liu Stephen Noell Mary Piotrowski Robert Stanton Hui Zhang Salvatore Corallino Andrea Faedo Maria Insidioso Giovanna Maresca Loredana Redaelli Francesca Sassone Lia Scarabottolo Michela Stucchi Paola Tarroni Sara Tremolada Helena Batoulis Andreas Becker Eckhard Bender Yung-Ning Chang Alexander Ehrmann Anke Müller-Fahrnow Vera Pütter Diana Zindel Bradford Hamilton Martin Lenter Diana Santacruz Coralie Viollet Charles Whitehurst Kai Johnsson Philipp Leippe Birgit Baumgarten Lena Chang Yvonne Ibig Martin Pfeifer Jürgen Reinhardt Julian Schönbett Paul Selzer Klaus Seuwen Charles Bettembourg Bruno Biton Jörg Czech Hélène de Foucauld Michel Didier Thomas Licher Vincent Mikol Antje Pommereau Frédéric Puech Veeranagouda Yaligara Aled Edwards Brandon J Bongers Laura H Heitman Ad P IJzerman Huub J Sijben Gerard J P van Westen Justine Grixti Douglas B Kell Farah Mughal Neil Swainston Marina Wright-Muelas Tina Bohstedt Nicola Burgess-Brown Liz Carpenter Katharina Dürr Jesper Hansen Andreea Scacioc Giulia Banci Claire Colas Daniela Digles Gerhard Ecker Barbara Füzi Viktoria Gamsjäger Melanie Grandits Riccardo Martini Florentina Troger Patrick Altermatt Cédric Doucerain Franz Dürrenberger Vania Manolova Anna-Lena Steck Hanna Sundström Maria Wilhelm Claire M Steppan

Nat Rev Drug Discov 2020 07;19(7):429-430

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/d41573-020-00056-6DOI Listing
July 2020

A Human Stem Cell Model of Fabry Disease Implicates LIMP-2 Accumulation in Cardiomyocyte Pathology.

Stem Cell Reports 2019 08 1;13(2):380-393. Epub 2019 Aug 1.

Sanofi, Translational Sciences Unit, Sanofi, 13 quai Jules Guesdes, 94400 Vitry-sur-Seine, France. Electronic address:

Here, we have used patient-derived induced pluripotent stem cell (iPSC) and gene-editing technology to study the cardiac-related molecular and functional consequences of mutations in GLA causing the lysosomal storage disorder Fabry disease (FD), for which heart dysfunction is a major cause of mortality. Our in vitro model recapitulated clinical data with FD cardiomyocytes accumulating GL-3 and displaying an increased excitability, with altered electrophysiology and calcium handling. Quantitative proteomics enabled the identification of >5,500 proteins in the cardiomyocyte proteome and secretome, and revealed accumulation of the lysosomal protein LIMP-2 and secretion of cathepsin F and HSPA2/HSP70-2 in FD. Genetic correction reversed these changes. Overexpression of LIMP-2 directly induced the secretion of cathepsin F and HSPA2/HSP70-2, implying causative relationship, and led to massive vacuole accumulation. In summary, our study has revealed potential new cardiac biomarkers for FD, and provides valuable mechanistic insight into the earliest pathological events in FD cardiomyocytes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stemcr.2019.07.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700557PMC
August 2019

Type 2/Th2-driven inflammation impairs olfactory sensory neurogenesis in mouse chronic rhinosinusitis model.

Allergy 2019 03 16;74(3):549-559. Epub 2018 Dec 16.

Translational Sciences, Sanofi, Chilly-Mazarin, France.

Background: Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is a chronic inflammatory disease often accompanied by impairment of sense of smell. This symptom has been somewhat overlooked, and its relationship to inflammatory cytokines, tissue compression, neuronal loss, and neurogenesis is still unclear.

Methods: In order to elucidate potential mechanisms leading to CRS in humans, we have established a type 2/T helper type 2 cell (Th2)-mediated allergic CRS mouse model, based on house dust mite (HDM) and Staphylococcus aureus enterotoxin B (SEB) sensitization. The inflammatory status of the olfactory epithelium (OE) was assessed using histology, biochemistry, and transcriptomics. The sense of smell was evaluated by studying olfactory behavior and recording electro-olfactograms (EOGs).

Results: After 22 weeks, a typical type 2/Th2-mediated inflammatory profile was obtained, as demonstrated by increased interleukin (IL)-4, IL-5, and IL-13 in the OE. The number of mast cells and eosinophils was increased, and infiltration of these cells into the olfactory mucosa was also observed. In parallel, transcriptomic and histology analyses indicated a decreased number of immature olfactory neurons, possibly due to decreased renewal. However, the number of mature sensory neurons was not affected and neither the EOG nor olfactory behavior was impaired.

Conclusion: Our mouse model of CRS displayed an allergic response to HDM + SEB administration, including the type 2/Th2 inflammatory profile characteristic of human eosinophilic CRSwNP. Although the sense of smell did not appear to be altered in these conditions, the data reveal the influence of chronic inflammation on olfactory neurogenesis, suggesting that factors unique to humans may be involved in CRSwNP-associated anosmia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/all.13559DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590422PMC
March 2019

Functional Studies of Sodium Channels: From Target to Compound Identification.

Curr Protoc Pharmacol 2016 12 13;75:9.21.1-9.21.35. Epub 2016 Dec 13.

Sanofi, Paris, France.

Over the last six decades, voltage-gated sodium (Na ) channels have attracted a great deal of scientific and pharmaceutical interest, driving fundamental advances in both biology and technology. The structure and physiological function of these channels have been extensively studied; clinical and genetic data have uncovered their implication in diseases such as epilepsy, arrhythmias, and pain, bringing them into focus as current and future drug targets. While different techniques have been established to record the activity of Na channels, proper determination of their properties still presents serious challenges, depending upon the experimental conditions and the desired subtype of channel to be characterized. The aim of this unit is to review the characteristics of Na channels, their properties, the cells in which they can be studied, and the currently available techniques. Topics covered include the determination of Na -channel biophysical properties as well as the use of toxins to discriminate between subtypes using electrophysiological or optical methods. Perspectives on the development of high-throughput screening assays with their advantages and limitations are also discussed to allow a better understanding of the challenges encountered in voltage-gated sodium channel preclinical drug discovery. © 2016 by John Wiley & Sons, Inc.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpph.14DOI Listing
December 2016

Characterization of SSR103800, a selective inhibitor of the glycine transporter-1 in models predictive of therapeutic activity in schizophrenia.

Pharmacol Biochem Behav 2008 Nov 24;91(1):47-58. Epub 2008 Jun 24.

Sanofi-Aventis, CNS Department, 31 avenue Paul Vaillant Couturier, Bagneux, France.

On native human, rat and mouse glycine transporter-1(GlyT1), SSR130800 behaves as a selective inhibitor with IC50 values of 1.9, 5.3 and 6.8 nM, respectively. It reversibly blocked glycine uptake in mouse brain cortical homogenates, increased extracellular levels of glycine in the rat prefrontal cortex, and potentiated NMDA-mediated excitatory postsynaptic currents in rat hippocampal slices. SSR103800 (30 mg/kg, p.o.) decreased MK-801- and PCP-induced locomotor hyperactivity in rodents. SSR103800 (1 and 10 mg/kg, p.o.) attenuated social recognition deficit in adult rats induced by neonatal injections of PCP (10 mg/kg, s.c., on post-natal day 7, 9 and 11). SSR103800 (3 mg/kg, p.o.) counteracted the deficit in short-term visual episodic-like memory induced by a low challenge dose of PCP (1 mg/kg, i.p.), in PCP-sensitized rats (10 mg/kg, i.p.). SSR103800 (30 mg/kg, i.p.) increased the prepulse inhibition of the startle reflex in DBA/1J mice. SSR103800 decreased defensive- and despair-related behaviors in the tonic immobility test in gerbils (10 and 30 mg/kg, p.o.) and in the forced-swimming procedure in rats (1 and 3 mg/kg, p.o.), respectively. These findings suggest that SSR103800 may have a therapeutic potential in the management of the core symptoms of schizophrenia and comorbid depression states.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbb.2008.06.009DOI Listing
November 2008

SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (1) binding and functional profile.

Neuropsychopharmacology 2007 Jan 4;32(1):1-16. Epub 2006 Oct 4.

Central Nervous System Research Department, Sanofi-Aventis, Bagneux, France.

In this paper, we report on the pharmacological and functional profile of SSR180711 (1,4-Diazabicyclo[3.2.2]nonane-4-carboxylic acid, 4-bromophenyl ester), a new selective alpha7 acetylcholine nicotinic receptor (n-AChRs) partial agonist. SSR180711 displays high affinity for rat and human alpha7 n-AChRs (K(i) of 22+/-4 and 14+/-1 nM, respectively). Ex vivo (3)[H]alpha-bungarotoxin binding experiments demonstrate that SSR180711 rapidly penetrates into the brain (ID(50)=8 mg/kg p.o.). In functional studies performed with human alpha7 n-AChRs expressed in Xenopus oocytes or GH4C1 cells, the compound shows partial agonist effects (intrinsic activity=51 and 36%, EC(50)=4.4 and 0.9 microM, respectively). In rat cultured hippocampal neurons, SSR180711 induced large GABA-mediated inhibitory postsynaptic currents and small alpha-bungarotoxin sensitive currents through the activation of presynaptic and somato-dendritic alpha7 n-AChRs, respectively. In mouse hippocampal slices, the compound increased the amplitude of both glutamatergic (EPSCs) and GABAergic (IPSCs) postsynaptic currents evoked in CA1 pyramidal cells. In rat and mouse hippocampal slices, a concentration of 0.3 muM of SSR180711 increased long-term potentiation (LTP) in the CA1 field. Null mutation of the alpha7 n-AChR gene totally abolished SSR180711-induced modulation of EPSCs, IPSCs and LTP in mice. Intravenous administration of SSR180711 strongly increased the firing rate of single ventral pallidum neurons, extracellularly recorded in anesthetized rats. In microdialysis experiments, administration of the compound (3-10 mg/kg i.p.) dose-dependently increased extracellular acetylcholine (ACh) levels in the hippocampus and prefrontal cortex of freely moving rats. Together, these results demonstrate that SSR180711 is a selective and partial agonist at human, rat and mouse alpha7 n-AChRs, increasing glutamatergic neurotransmission, ACh release and LTP in the hippocampus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.npp.1301189DOI Listing
January 2007

Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic.

Neuropsychopharmacology 2005 Nov;30(11):1963-85

CNS Department, Sanofi-Synthelabo Recherche, Bagneux, France.

Noncompetitive N-methyl-D-aspartate (NMDA) blockers induce schizophrenic-like symptoms in humans, presumably by impairing glutamatergic transmission. Therefore, a compound potentiating this neurotransmission, by increasing extracellular levels of glycine (a requisite co-agonist of glutamate), could possess antipsychotic activity. Blocking the glycine transporter-1 (GlyT1) should, by increasing extracellular glycine levels, potentiate glutamatergic neurotransmission. SSR504734, a selective and reversible inhibitor of human, rat, and mouse GlyT1 (IC50=18, 15, and 38 nM, respectively), blocked reversibly the ex vivo uptake of glycine (mouse cortical homogenates: ID50: 5 mg/kg i.p.), rapidly and for a long duration. In vivo, it increased (minimal efficacious dose (MED): 3 mg/kg i.p.) extracellular levels of glycine in the rat prefrontal cortex (PFC). This resulted in an enhanced glutamatergic neurotransmission, as SSR504734 potentiated NMDA-mediated excitatory postsynaptic currents (EPSCs) in rat hippocampal slices (minimal efficacious concentration (MEC): 0.5 microM) and intrastriatal glycine-induced rotations in mice (MED: 1 mg/kg i.p.). It normalized activity in rat models of hippocampal and PFC hypofunctioning (through activation of presynaptic CB1 receptors): it reversed the decrease in electrically evoked [3H]acetylcholine release in hippocampal slices (MEC: 10 nM) and the reduction of PFC neurons firing (MED: 0.3 mg/kg i.v.). SSR504734 prevented ketamine-induced metabolic activation in mice limbic areas and reversed MK-801-induced hyperactivity and increase in EEG spectral energy in mice and rats, respectively (MED: 10-30 mg/kg i.p.). In schizophrenia models, it normalized a spontaneous prepulse inhibition deficit in DBA/2 mice (MED: 15 mg/kg i.p.), and reversed hypersensitivity to locomotor effects of d-amphetamine and selective attention deficits (MED: 1-3 mg/kg i.p.) in adult rats treated neonatally with phencyclidine. Finally, it increased extracellular dopamine in rat PFC (MED: 10 mg/kg i.p.). The compound showed additional activity in depression/anxiety models, such as the chronic mild stress in mice (10 mg/kg i.p.), ultrasonic distress calls in rat pups separated from their mother (MED: 1 mg/kg s.c.), and the increased latency of paradoxical sleep in rats (MED: 30 mg/kg i.p.). In conclusion, SSR504734 is a potent and selective GlyT1 inhibitor, exhibiting activity in schizophrenia, anxiety and depression models. By targeting one of the primary causes of schizophrenia (hypoglutamatergy), it is expected to be efficacious not only against positive but also negative symptoms, cognitive deficits, and comorbid depression/anxiety states.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.npp.1300772DOI Listing
November 2005