Publications by authors named "Brigida Boccanegra"

3 Publications

  • Page 1 of 1

Ergogenic Effect of BCAAs and L-Alanine Supplementation: Proof-of-Concept Study in a Murine Model of Physiological Exercise.

Nutrients 2020 Jul 30;12(8). Epub 2020 Jul 30.

Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4-Campus, 70125 Bari, Italy.

Background: Branched-chain amino acids (BCAAs: leucine, isoleucine, valine) account for 35% of skeletal muscle essential amino acids (AAs). As such, they must be provided in the diet to support peptide synthesis and inhibit protein breakdown. Although substantial evidence has been collected about the potential usefulness of BCAAs in supporting muscle function and structure, dietary supplements containing BCAAs alone may not be effective in controlling muscle protein turnover, due to the rate-limiting bioavailability of other AAs involved in BCAAs metabolism.

Methods: We aimed to evaluate the in vivo/ex vivo effects of a 4-week treatment with an oral formulation containing BCAAs alone (2:1:1) on muscle function, structure, and metabolism in a murine model of physiological exercise, which was compared to three modified formulations combining BCAAs with increasing concentrations of L-Alanine (ALA), an AA controlling BCAAs catabolism.

Results: A preliminary pharmacokinetic study confirmed the ability of ALA to boost up BCAAs bioavailability. After 4 weeks, (BCAAs + 2ALA) had the best protective effect on mice force and fatigability, as well as on muscle morphology and metabolic indices.

Conclusion: Our study corroborates the use of BCAAs + ALA to support muscle health during physiological exercise, underlining how the relative BCAAs/ALA ratio is important to control BCAAs distribution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu12082295DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468919PMC
July 2020

Safety issues and harmful pharmacological interactions of nutritional supplements in Duchenne muscular dystrophy: considerations for Standard of Care and emerging virus outbreaks.

Pharmacol Res 2020 08 30;158:104917. Epub 2020 May 30.

Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy. Electronic address:

At the moment, little treatment options are available for Duchenne muscular dystrophy (DMD). The absence of the dystrophin protein leads to a complex cascade of pathogenic events in myofibres, including chronic inflammation and oxidative stress as well as altered metabolism. The attention towards dietary supplements in DMD is rapidly increasing, with the aim to counteract pathology-related alteration in nutrient intake, the consequences of catabolic distress or to enhance the immunological response of patients as nowadays for the COVID-19 pandemic emergency. By definition, supplements do not exert therapeutic actions, although a great confusion may arise in daily life by the improper distinction between supplements and therapeutic compounds. For most supplements, little research has been done and little evidence is available concerning their effects in DMD as well as their preventing actions against infections. Often these are not prescribed by clinicians and patients/caregivers do not discuss the use with their clinical team. Then, little is known about the real extent of supplement use in DMD patients. It is mistakenly assumed that, since compounds are of natural origin, if a supplement is not effective, it will also do no harm. However, supplements can have serious side effects and also have harmful interactions, in terms of reducing efficacy or leading to toxicity, with other therapies. It is therefore pivotal to shed light on this unclear scenario for the sake of patients. This review discusses the supplements mostly used by DMD patients, focusing on their potential toxicity, due to a variety of mechanisms including pharmacodynamic or pharmacokinetic interactions and contaminations, as well as on reports of adverse events. This overview underlines the need for caution in uncontrolled use of dietary supplements in fragile populations such as DMD patients. A culture of appropriate use has to be implemented between clinicians and patients' groups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2020.104917DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261230PMC
August 2020

Dasatinib/HP-β-CD Inclusion Complex Based Aqueous Formulation as a Promising Tool for the Treatment of Paediatric Neuromuscular Disorders.

Int J Mol Sci 2019 Jan 30;20(3). Epub 2019 Jan 30.

Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy.

New scientific findings have recently shown that dasatinib (DAS), the first-choice oral drug in the treatment of chronic myeloid leukemia (CML) for adult patients who are resistant or intolerant to imatinib, is also potentially useful in the paediatric age. Moreover, recent preclinical evidences suggest that this drug could be useful for the treatment of Duchenne muscular dystrophy, since it targets cSrc tyrosin kinase. Based on these considerations, the purpose of this work was to use the strategy of complexation with hydroxypropyl-β-cyclodextrin (HP-β-CD) in order to obtain an aqueous preparation of DAS, which is characterized by a low water solubility (6.49 × 10 mg/mL). Complexation studies demonstrated that HP-β-CD is able to form a stable host-guest inclusion complex with DAS with a 1:1 apparent formation constant of 922.13 M, as also demonstrated by the Job's plot, with an increase in DAS aqueous solubility of about 21 times in the presence of 6% / of HP-β-CD (0.014 mg/mL). The inclusion complex has been prepared in the solid state by lyophilization and characterized by Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR), Differential Scanning Calorimetry (DSC) techniques, and its dissolution profile was studied at different pH values. Moreover, in view of potential use of DAS for Duchenne muscular dystrophy, the cytotoxic effect of the inclusion complex has been assessed on C2C12 cells, a murine muscle satellite cell line. In parallel, a one-week oral treatment was performed in wild type C57Bl/6J mice to test both palatability and the exposure levels of the new oral formulation of the compound. In conclusion, this new inclusion complex could allow the development of a liquid and solvent free formulation to be administered both orally and parenterally, especially in the case of an administration in paediatric age.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms20030591DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386909PMC
January 2019