Publications by authors named "Brian P Steves"

2 Publications

  • Page 1 of 1

Asymmetry of marine invasions across tropical oceans.

Ecology 2021 08 14;102(8):e03434. Epub 2021 Jul 14.

Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, Maryland, 21037, USA.

Understanding the mechanisms of spatial variation of biological invasions, across local-to-global scales, has been a major challenge. The importance of evolutionary history for invasion dynamics was noted by Darwin, and several studies have since considered how biodiversity of source and recipient regions can influence the probability of invasions. For over a century, the Panama Canal has connected water bodies and biotas with different evolutionary histories, and created a global shipping hot spot, providing unique opportunities to test mechanisms that affect invasion patterns. Here, we test for asymmetry in both the extent of invasions and predation effects, a possible mechanism of biotic resistance, between two tropical oceans at similar latitudes. We estimated nonnative species (NNS) richness for sessile marine invertebrates, using standardized field surveys and literature synthesis, to examine whether invasions are asymmetrical, with more NNS present in the less diverse Pacific compared to the Atlantic. We also experimentally tested whether predation differentially limits the abundance and distribution of these invertebrates between oceans. In standardized surveys, observed total NNS richness was higher in the Pacific (18 NNS, 30% of all Pacific species) than the Atlantic (11 NNS, 13% of all Atlantic species). Similarly, literature-based records also display this asymmetry between coasts. When considering only the reciprocal exchange of NNS between Atlantic and Pacific biotas, NNS exchange from Atlantic to Pacific was eightfold higher than the opposite direction, exceeding the asymmetry predicted by random exchange based simply on differences of overall diversity per region. Predation substantially reduced biomass and changed NNS composition in the Pacific, but no such effects were detected on the Atlantic coast. Specifically, some dominant NNS were particularly susceptible to predation in the Pacific, supporting the hypothesis that predation may reduce the abundance of certain NNS here. These results are consistent with predictions that high diversity in source regions, and species interactions in recipient regions, shape marine invasion patterns. Our comparisons and experiments across two tropical ocean basins, suggest that global invasion dynamics are likely driven by both ecological and evolutionary factors that shape susceptibility to and directionality of invasions across biogeographic scales.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
August 2021

Tsunami-driven rafting: Transoceanic species dispersal and implications for marine biogeography.

Science 2017 Sep 28;357(6358):1402-1406. Epub 2017 Sep 28.

Smithsonian Environmental Research Center, Edgewater, MD 21037, USA.

The 2011 East Japan earthquake generated a massive tsunami that launched an extraordinary transoceanic biological rafting event with no known historical precedent. We document 289 living Japanese coastal marine species from 16 phyla transported over 6 years on objects that traveled thousands of kilometers across the Pacific Ocean to the shores of North America and Hawai'i. Most of this dispersal occurred on nonbiodegradable objects, resulting in the longest documented transoceanic survival and dispersal of coastal species by rafting. Expanding shoreline infrastructure has increased global sources of plastic materials available for biotic colonization and also interacts with climate change-induced storms of increasing severity to eject debris into the oceans. In turn, increased ocean rafting may intensify species invasions.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
September 2017