Publications by authors named "Brian D Haldeman"

9 Publications

  • Page 1 of 1

Myosin light chain kinase steady-state kinetics: comparison of smooth muscle myosin II and nonmuscle myosin IIB as substrates.

Cell Biochem Funct 2016 Oct 16;34(7):469-474. Epub 2016 Aug 16.

Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, Nevada, USA.

Myosin light chain kinase (MLCK) phosphorylates S19 of the myosin regulatory light chain (RLC), which is required to activate myosin's ATPase activity and contraction. Smooth muscles are known to display plasticity in response to factors such as inflammation, developmental stage, or stress, which lead to differential expression of nonmuscle and smooth muscle isoforms. Here, we compare steady-state kinetics parameters for phosphorylation of different MLCK substrates: (1) nonmuscle RLC, (2) smooth muscle RLC, and heavy meromyosin subfragments of (3) nonmuscle myosin IIB, and (4) smooth muscle myosin II. We show that MLCK has a ~2-fold higher k for both smooth muscle myosin II substrates compared with nonmuscle myosin IIB substrates, whereas K values were very similar. Myosin light chain kinase has a 1.6-fold and 1.5-fold higher specificity (k /K ) for smooth versus nonmuscle-free RLC and heavy meromyosin, respectively, suggesting that differences in specificity are dictated by RLC sequences. Of the 10 non-identical RLC residues, we ruled out 7 as possible underlying causes of different MLCK kinetics. The remaining 3 residues were found to be surface exposed in the N-terminal half of the RLC, consistent with their importance in substrate recognition. These data are consistent with prior deletion/chimera studies and significantly add to understanding of MLCK myosin interactions.

Significance Of The Study: Phosphorylation of nonmuscle and smooth muscle myosin by myosin light chain kinase (MLCK) is required for activation of myosin's ATPase activity. In smooth muscles, nonmuscle myosin coexists with smooth muscle myosin, but the two myosins have very different chemo-mechanical properties relating to their ability to maintain force. Differences in specificity of MLCK for different myosin isoforms had not been previously investigated. We show that the MLCK prefers smooth muscle myosin by a significant factor. These data suggest that nonmuscle myosin is phosphorylated more slowly than smooth muscle myosin during a contraction cycle.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5076371PMC
http://dx.doi.org/10.1002/cbf.3209DOI Listing
October 2016

Diffusion of myosin light chain kinase on actin: A mechanism to enhance myosin phosphorylation rates in smooth muscle.

J Gen Physiol 2015 Oct;146(4):267-80

Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557

Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot-labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto-myosin and MLCK-myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting "stuck" on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1085/jgp.201511483DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586593PMC
October 2015

Velocities of unloaded muscle filaments are not limited by drag forces imposed by myosin cross-bridges.

Proc Natl Acad Sci U S A 2015 Sep 20;112(36):11235-40. Epub 2015 Aug 20.

Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557

It is not known which kinetic step in the acto-myosin ATPase cycle limits contraction speed in unloaded muscles (V0). Huxley's 1957 model [Huxley AF (1957) Prog Biophys Biophys Chem 7:255-318] predicts that V0 is limited by the rate that myosin detaches from actin. However, this does not explain why, as observed by Bárány [Bárány M (1967) J Gen Physiol 50(6, Suppl):197-218], V0 is linearly correlated with the maximal actin-activated ATPase rate (vmax), which is limited by the rate that myosin attaches strongly to actin. We have observed smooth muscle myosin filaments of different length and head number (N) moving over surface-attached F-actin in vitro. Fitting filament velocities (V) vs. N to a detachment-limited model using the myosin step size d=8 nm gave an ADP release rate 8.5-fold faster and ton (myosin's attached time) and r (duty ratio) ∼10-fold lower than previously reported. In contrast, these data were accurately fit to an attachment-limited model, V=N·v·d, over the range of N found in all muscle types. At nonphysiologically high N, V=L/ton rather than d/ton, where L is related to the length of myosin's subfragment 2. The attachment-limited model also fit well to the [ATP] dependence of V for myosin-rod cofilaments at three fixed N. Previously published V0 vs. vmax values for 24 different muscles were accurately fit to the attachment-limited model using widely accepted values for r and N, giving d=11.1 nm. Therefore, in contrast with Huxley's model, we conclude that V0 is limited by the actin-myosin attachment rate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1510241112DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568697PMC
September 2015

The kinetics underlying the velocity of smooth muscle myosin filament sliding on actin filaments in vitro.

J Biol Chem 2014 Jul;289(30):21055-70

Actin-myosin interactions are well studied using soluble myosin fragments, but little is known about effects of myosin filament structure on mechanochemistry. We stabilized unphosphorylated smooth muscle myosin (SMM) and phosphorylated smooth muscle myosin (pSMM) filaments against ATP-induced depolymerization using a cross-linker and attached fluorescent rhodamine (XL-Rh-SMM). Electron micrographs showed that these side polar filaments are very similar to unmodified filaments. They are ~0.63 μm long and contain ~176 molecules. Rate constants for ATP-induced dissociation and ADP release from acto-myosin for filaments and S1 heads were similar. Actin-activated ATPases of SMM and XL-Rh-SMM were similarly regulated. XL-Rh-pSMM filaments moved processively on F-actin that was bound to a PEG brush surface. ATP dependence of filament velocities was similar to that for solution ATPases at high [actin], suggesting that both processes are limited by the same kinetic step (weak to strong transition) and therefore are attachment- limited. This differs from actin sliding over myosin monomers, which is primarily detachment-limited. Fitting filament data to an attachment-limited model showed that approximately half of the heads are available to move the filament, consistent with a side polar structure. We suggest the low stiffness subfragment 2 (S2) domain remains unhindered during filament motion in our assay. Actin-bound negatively displaced heads will impart minimal drag force because of S2 buckling. Given the ADP release rate, the velocity, and the length of S2, these heads will detach from actin before slack is taken up into a backwardly displaced high stiffness position. This mechanism explains the lack of detachment- limited kinetics at physiological [ATP]. These findings address how nonlinear elasticity in assemblies of motors leads to efficient collective force generation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M114.564740DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110310PMC
July 2014

Kinetics of myosin light chain kinase activation of smooth muscle myosin in an in vitro model system.

Biochemistry 2013 Nov 11;52(47):8489-500. Epub 2013 Nov 11.

Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine , Reno, Nevada 99557, United States.

During activation of smooth muscle contraction, one myosin light chain kinase (MLCK) molecule rapidly phosphorylates many smooth muscle myosin (SMM) molecules, suggesting that muscle activation rates are influenced by the kinetics of MLCK-SMM interactions. To determine the rate-limiting step underlying activation of SMM by MLCK, we measured the kinetics of calcium-calmodulin (Ca²⁺CaM)-MLCK-mediated SMM phosphorylation and the corresponding initiation of SMM-based F-actin motility in an in vitro system with SMM attached to a coverslip surface. Fitting the time course of SMM phosphorylation to a kinetic model gave an initial phosphorylation rate, kp(o), of ~1.17 heads s⁻¹ MLCK⁻¹. Also, we measured the dwell time of single streptavidin-coated quantum dot-labeled MLCK molecules interacting with surface-attached SMM and phosphorylated SMM using total internal reflection fluorescence microscopy. From these data, the dissociation rate constant from phosphorylated SMM was 0.80 s⁻¹, which was similar to the kp(o) mentioned above and with rates measured in solution. This dissociation rate was essentially independent of the phosphorylation state of SMM. From calculations using our measured dissociation rates and Kd values, and estimates of SMM and MLCK concentrations in muscle, we predict that the dissociation of MLCK from phosphorylated SMM is rate-limiting and that the rate of the phosphorylation step is faster than this dissociation rate. Also, association with SMM (11-46 s⁻¹) would be much faster than with pSMM (<0.1-0.2 s⁻¹). This suggests that the probability of MLCK interacting with unphosphorylated versus phosphorylated SMM is 55-460 times greater. This would avoid sequestering MLCK to unproductive interactions with previously phosphorylated SMM, potentially leading to faster rates of phosphorylation in muscle.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi401001xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886827PMC
November 2013

Modification of interface between regulatory and essential light chains hampers phosphorylation-dependent activation of smooth muscle myosin.

J Biol Chem 2012 Jun 1;287(26):22068-79. Epub 2012 May 1.

Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA.

We examined the regulatory importance of interactions between regulatory light chain (RLC), essential light chain (ELC), and adjacent heavy chain (HC) in the regulatory domain of smooth muscle heavy meromyosin. After mutating the HC, RLC, and/or ELC to disrupt their predicted interactions (using scallop myosin coordinates), we measured basal ATPase, V(max), and K(ATPase) of actin-activated ATPase, actin-sliding velocities, rigor binding to actin, and kinetics of ATP binding and ADP release. If unphosphorylated, all mutants were similar to wild type showing turned-off behaviors. In contrast, if phosphorylated, mutation of RLC residues smM129Q and smG130C in the F-G helix linker, which interact with the ELC (Ca(2+) binding in scallop), was sufficient to abolish motility and diminish ATPase activity, without altering other parameters. ELC mutations within this interacting ELC loop (smR20M and smK25A) were normal, but smM129Q/G130C-R20M or -K25A showed a partially recovered phenotype suggesting that interaction between the RLC and ELC is important. A molecular dynamics study suggested that breaking the RLC/ELC interface leads to increased flexibility at the interface and ELC-binding site of the HC. We hypothesize that this leads to hampered activation by allowing a pre-existing equilibrium between activated and inhibited structural distributions (Vileno, B., Chamoun, J., Liang, H., Brewer, P., Haldeman, B. D., Facemyer, K. C., Salzameda, B., Song, L., Li, H. C., Cremo, C. R., and Fajer, P. G. (2011) Broad disorder and the allosteric mechanism of myosin II regulation by phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 108, 8218-8223) to be biased strongly toward the inhibited distribution even when the RLC is phosphorylated. We propose that an important structural function of RLC phosphorylation is to promote or assist in the maintenance of an intact RLC/ELC interface. If the RLC/ELC interface is broken, the off-state structures are no longer destabilized by phosphorylation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M112.343491DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3381165PMC
June 2012

Biochemistry of smooth muscle myosin light chain kinase.

Arch Biochem Biophys 2011 Jun 3;510(2):135-46. Epub 2011 May 3.

Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, 89557, USA.

The smooth muscle isoform of myosin light chain kinase (MLCK) is a Ca(2+)-calmodulin-activated kinase that is found in many tissues. It is particularly important for regulating smooth muscle contraction by phosphorylation of myosin. This review summarizes selected aspects of recent biochemical work on MLCK that pertains to its function in smooth muscle. In general, the focus of the review is on new findings, unresolved issues, and areas with the potential for high physiological significance that need further study. The review includes a concise summary of the structure, substrates, and enzyme activity, followed by a discussion of the factors that may limit the effective activity of MLCK in the muscle. The interactions of each of the many domains of MLCK with the proteins of the contractile apparatus, and the multi-domain interactions of MLCK that may control its behaviors in the cell are summarized. Finally, new in vitro approaches to studying the mechanism of phosphorylation of myosin are introduced.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2011.04.018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382066PMC
June 2011

Broad disorder and the allosteric mechanism of myosin II regulation by phosphorylation.

Proc Natl Acad Sci U S A 2011 May 2;108(20):8218-23. Epub 2011 May 2.

National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.

Double electron electron resonance EPR methods was used to measure the effects of the allosteric modulators, phosphorylation, and ATP, on the distances and distance distributions between the two regulatory light chain of myosin (RLC). Three different states of smooth muscle myosin (SMM) were studied: monomers, the short-tailed subfragment heavy meromyosin, and SMM filaments. We reconstituted myosin with nine single cysteine spin-labeled RLC. For all mutants we found a broad distribution of distances that could not be explained by spin-label rotamer diversity. For SMM and heavy meromyosin, several sites showed two heterogeneous populations in the unphosphorylated samples, whereas only one was observed after phosphorylation. The data were consistent with the presence of two coexisting heterogeneous populations of structures in the unphosphorylated samples. The two populations were attributed to an on and off state by comparing data from unphosphorylated and phosphorylated samples. Models of these two states were generated using a rigid body docking approach derived from EM [Wendt T, Taylor D, Trybus KM, Taylor K (2001) Proc Natl Acad Sci USA 98:4361-4366] (PNAS, 2001, 98:4361-4366), but our data revealed a new feature of the off-state, which is heterogeneity in the orientation of the two RLC. Our average off-state structure was very similar to the Wendt model reveal a new feature of the off state, which is heterogeneity in the orientations of the two RLC. As found previously in the EM study, our on-state structure was completely different from the off-state structure. The heads are splayed out and there is even more heterogeneity in the orientations of the two RLC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1014137108DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100986PMC
May 2011

Characterization of tightly associated smooth muscle myosin-myosin light-chain kinase-calmodulin complexes.

J Mol Biol 2009 Jul 25;390(5):879-92. Epub 2009 May 25.

Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, 89557, USA.

A current popular model to explain phosphorylation of smooth muscle myosin (SMM) by myosin light-chain kinase (MLCK) proposes that MLCK is bound tightly to actin but weakly to SMM. We found that MLCK and calmodulin (CaM) co-purify with unphosphorylated SMM from chicken gizzard, suggesting that they are tightly bound. Although the MLCK:SMM molar ratio in SMM preparations was well below stoichiometric (1:73+/-9), the ratio was approximately 23-37% of that in gizzard tissue. Fifteen to 30% of MLCK was associated with CaM at approximately 1 nM free [Ca(2+)]. There were two MLCK pools that bound unphosphorylated SMM with K(d) approximately 10 and 0.2 microM and phosphorylated SMM with K(d) approximately 20 and 0.2 microM. Using an in vitro motility assay to measure actin sliding velocities, we showed that the co-purifying MLCK-CaM was activated by Ca(2+) and phosphorylation of SMM occurred at a pCa(50) of 6.1 and at a Hill coefficient of 0.9. Similar properties were observed from reconstituted MLCK-CaM-SMM. Using motility assays, co-sedimentation assays, and on-coverslip enzyme-linked immunosorbent assays to quantify proteins on the motility assay coverslip, we provide strong evidence that most of the MLCK is bound directly to SMM through the telokin domain and some may also be bound to both SMM and to co-purifying actin through the N-terminal actin-binding domain. These results suggest that this MLCK may play a role in the initiation of contraction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2009.05.033DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2742357PMC
July 2009