Publications by authors named "Brett D Allison"

8 Publications

  • Page 1 of 1

4-Methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridine-Based P2X7 Receptor Antagonists: Optimization of Pharmacokinetic Properties Leading to the Identification of a Clinical Candidate.

J Med Chem 2017 06 25;60(11):4559-4572. Epub 2017 May 25.

Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States.

The synthesis and preclinical characterization of novel 4-(R)-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridines that are potent and selective brain penetrant P2X7 antagonists are described. Optimization efforts based on previously disclosed unsubstituted 6,7-dihydro-4H-triazolo[4,5-c]pyridines, methyl substituted 5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-a]pyrazines, and several other series lead to the identification of a series of 4-(R)-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridines that are selective P2X7 antagonists with potency at the rodent and human P2X7 ion channels. These novel P2X7 antagonists have suitable physicochemical properties, and several analogs have an excellent pharmacokinetic profile, good partitioning into the CNS and show robust in vivo target engagement after oral dosing. Improvements in metabolic stability led to the identification of JNJ-54175446 (14) as a candidate for clinical development. The drug discovery efforts and strategies that resulted in the identification of the clinical candidate are described herein.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.7b00408DOI Listing
June 2017

Gram-Scale Synthesis of a β-Secretase 1 (BACE 1) Inhibitor.

ACS Omega 2017 Feb 3;2(2):397-408. Epub 2017 Feb 3.

Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States.

Development of a scalable synthesis of an oxazine class of β-secretase inhibitor is described. Trifluoromethylated acyloin synthesis by the reaction of a mandelic acid with trifluoroacetic anhydride in the presence of pyridine (Dakin-West reaction) was used as an efficient strategy to install the key trifluoromethyl substituent on the oxazine ring. Diastereoselective addition of methyl magnesium bromide to a cyclic sulfamidate imine and trimethylsilyl trifluoromethanesulfonate catalyzed intramolecular amidine formation to yield oxazine-3-amine are some of the significant, novel synthetic methods developed in this synthesis. These critical transformations allowed a concise 11-step route to the target compound with excellent overall yields.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsomega.6b00362DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044763PMC
February 2017

Indole- and benzothiophene-based histamine H3 antagonists.

Bioorg Med Chem Lett 2010 Nov 27;20(21):6226-30. Epub 2010 Aug 27.

Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121-1126, United States.

Previous research on histamine H(3) antagonists has led to the development of a pharmacophore model consisting of a central phenyl core flanked by two alkylamine groups. Recent investigation of the replacement of the central phenyl core with heteroaromatic fragments resulted in the preparation of novel 3,5-, 3,6- and 3,7-substituted indole and 3,5-substituted benzothiophene analogs that demonstrate good to excellent hH(3) affinities. Select analogs were profiled in a rat pharmacokinetic model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2010.08.103DOI Listing
November 2010

Anthranilic sulfonamide CCK1/CCK2 dual receptor antagonists I: discovery of CCKR1 selectivity in a previously CCKR2-selective lead series.

Bioorg Med Chem Lett 2009 Nov 23;19(22):6373-5. Epub 2009 Sep 23.

Johnson & Johnson Pharmaceutical Research and Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.

A series of CCK2R-selective anthranilic amides is shown to derive CCK1R affinity via selective substitution of the amide side chain. Thus, extending the length of the original benzamide side chain by a single methylene unit imparts CCK1R affinity to the series, and further fine tuning of the affinity results in CCK1R selectivity of greater than 100-fold.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2009.09.064DOI Listing
November 2009

Discovery of potent cholecystokinin-2 receptor antagonists: elucidation of key pharmacophore elements by X-ray crystallographic and NMR conformational analysis.

Bioorg Med Chem 2008 Apr 5;16(7):3917-25. Epub 2008 Feb 5.

Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Drug Discover, 3210 Merryfield Row, San Diego, CA 92121, USA.

A novel series of cholecystokinin-2 receptor (CCK-2R) antagonists has been identified, as exemplified by anthranilic sulfonamide 1 (pK(i)=7.6). Pharmacokinetic and stability studies indicated that this series of compounds suffered from metabolic degradation, and that both the benzothiadiazole and piperidine rings were rapidly oxidized by liver enzymes. A combination of synthesis, computational methods, (1)H NMR conformational studies, and X-ray crystallographic analyses were applied to elucidate key pharmacophore elements, and to discover analogs with improved pharmacokinetic profiles, and high receptor binding affinity and selectivity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2008.01.059DOI Listing
April 2008

Synthesis and solid-phase purification of anthranilic sulfonamides as CCK-2 ligands.

Bioorg Med Chem Lett 2007 Dec 29;17(24):6905-9. Epub 2007 Sep 29.

Johnson & Johnson Pharmaceutical Research and Development, 3210 Merryfield Row, San Diego, CA 92121, USA.

A novel strategy for the synthesis of cholecystokinin-2 receptor ligands was developed. The route employs a solution-phase synthesis of a series of anthranilic sulfonamides followed by a resin capture purification strategy to produce multi-milligram quantities of compounds for bioassay. The synthesis was used to produce >100 compounds containing various functional groups, highlighting the general applicability of this strategy and to address specific metabolism issues in our CCK-2 program.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2007.09.087DOI Listing
December 2007

Tetrahydroindazole inhibitors of bacterial type II topoisomerases. Part 2: SAR development and potency against multidrug-resistant strains.

Bioorg Med Chem Lett 2007 May 6;17(10):2718-22. Epub 2007 Mar 6.

Johnson & Johnson Pharmaceutical Research & Development L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.

We have previously reported a novel class of tetrahydroindazoles that display potency against a variety of Gram-positive and Gram-negative bacteria, potentially via interaction with type II bacterial topoisomerases. Herein are reported SAR investigations of this new series. Several compounds possessing broad-spectrum potency were prepared. Further, these compounds exhibit activity against multidrug-resistant Gram-positive microorganisms equivalent to that against susceptible strains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2007.03.004DOI Listing
May 2007

Identification and optimization of anthranilic sulfonamides as novel, selective cholecystokinin-2 receptor antagonists.

J Med Chem 2006 Oct;49(21):6371-90

Johnson and Johnson Pharmaceutical Research and Development, LLC, 3210 Merryfield Row, San Diego, California 92121, USA.

A high throughput screening approach to the identification of selective cholecystokinin-2 receptor (CCK-2R) ligands resulted in the discovery of a novel series of antagonists, represented by 1-[2-[(2,1,3-benzothiadiazol-4-ylsulfonyl)amino]-5-chlorobenzoyl]-piperidine (1; CCK-2R, pK(I) = 6.4). Preliminary exploration of the structure-activity relationships around the anthranilic ring and the amide and sulfonamide moieties led to a nearly 50-fold improvement of receptor affinity and showed a greater than 1000-fold selectivity over the related cholecystokinin-1 receptor. Pharmacokinetic evaluation led to the identification of 4-[4-iodo-2-[(5-quinoxalinylsulfonyl)amino]benzoyl]-morpholine, 26d, a compound that demonstrates promising pharmacokinetic properties in the rat and dog with respect to plasma clearance and oral bioavailability and is a potent inhibitor in vivo of pentagastrin-stimulated acid secretion in the rat when dosed orally.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm060590xDOI Listing
October 2006