Publications by authors named "Brendan J Culleton"

35 Publications

Genomic insights into the formation of human populations in East Asia.

Nature 2021 03 22;591(7850):413-419. Epub 2021 Feb 22.

Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.

The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people. Here we report genome-wide data from 166 East Asian individuals dating to between 6000 BC and AD 1000 and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan Plateau are linked by a deeply splitting lineage that probably reflects a coastal migration during the Late Pleistocene epoch. We also follow expansions during the subsequent Holocene epoch from four regions. First, hunter-gatherers from Mongolia and the Amur River Basin have ancestry shared by individuals who speak Mongolic and Tungusic languages, but do not carry ancestry characteristic of farmers from the West Liao River region (around 3000 BC), which contradicts theories that the expansion of these farmers spread the Mongolic and Tungusic proto-languages. Second, farmers from the Yellow River Basin (around 3000 BC) probably spread Sino-Tibetan languages, as their ancestry dispersed both to Tibet-where it forms approximately 84% of the gene pool in some groups-and to the Central Plain, where it has contributed around 59-84% to modern Han Chinese groups. Third, people from Taiwan from around 1300 BC to AD 800 derived approximately 75% of their ancestry from a lineage that is widespread in modern individuals who speak Austronesian, Tai-Kadai and Austroasiatic languages, and that we hypothesize derives from farmers of the Yangtze River Valley. Ancient people from Taiwan also derived about 25% of their ancestry from a northern lineage that is related to, but different from, farmers of the Yellow River Basin, which suggests an additional north-to-south expansion. Fourth, ancestry from Yamnaya Steppe pastoralists arrived in western Mongolia after around 3000 BC but was displaced by previously established lineages even while it persisted in western China, as would be expected if this ancestry was associated with the spread of proto-Tocharian Indo-European languages. Two later gene flows affected western Mongolia: migrants after around 2000 BC with Yamnaya and European farmer ancestry, and episodic influences of later groups with ancestry from Turan.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03336-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993749PMC
March 2021

A genetic history of the pre-contact Caribbean.

Nature 2021 02 23;590(7844):103-110. Epub 2020 Dec 23.

Department of Genetics, Harvard Medical School, Boston, MA, USA.

Humans settled the Caribbean about 6,000 years ago, and ceramic use and intensified agriculture mark a shift from the Archaic to the Ceramic Age at around 2,500 years ago. Here we report genome-wide data from 174 ancient individuals from The Bahamas, Haiti and the Dominican Republic (collectively, Hispaniola), Puerto Rico, Curaçao and Venezuela, which we co-analysed with 89 previously published ancient individuals. Stone-tool-using Caribbean people, who first entered the Caribbean during the Archaic Age, derive from a deeply divergent population that is closest to Central and northern South American individuals; contrary to previous work, we find no support for ancestry contributed by a population related to North American individuals. Archaic-related lineages were >98% replaced by a genetically homogeneous ceramic-using population related to speakers of languages in the Arawak family from northeast South America; these people moved through the Lesser Antilles and into the Greater Antilles at least 1,700 years ago, introducing ancestry that is still present. Ancient Caribbean people avoided close kin unions despite limited mate pools that reflect small effective population sizes, which we estimate to be a minimum of 500-1,500 and a maximum of 1,530-8,150 individuals on the combined islands of Puerto Rico and Hispaniola in the dozens of generations before the individuals who we analysed lived. Census sizes are unlikely to be more than tenfold larger than effective population sizes, so previous pan-Caribbean estimates of hundreds of thousands of people are too large. Confirming a small and interconnected Ceramic Age population, we detect 19 pairs of cross-island cousins, close relatives buried around 75 km apart in Hispaniola and low genetic differentiation across islands. Genetic continuity across transitions in pottery styles reveals that cultural changes during the Ceramic Age were not driven by migration of genetically differentiated groups from the mainland, but instead reflected interactions within an interconnected Caribbean world.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-03053-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864882PMC
February 2021

Maritime Paleoindian technology, subsistence, and ecology at an ~11,700 year old Paleocoastal site on California's Northern Channel Islands, USA.

PLoS One 2020 17;15(9):e0238866. Epub 2020 Sep 17.

Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America.

During the last 10 years, we have learned a great deal about the potential for a coastal peopling of the Americas and the importance of marine resources in early economies. Despite research at a growing number of terminal Pleistocene archaeological sites on the Pacific Coast of the Americas, however, important questions remain about the lifeways of early Paleocoastal peoples. Research at CA-SRI-26, a roughly 11,700 year old site on California's Santa Rosa Island, provides new data on Paleoindian technologies, subsistence strategies, and seasonality in an insular maritime setting. Buried beneath approximately two meters of alluvium, much of the site has been lost to erosion, but its remnants have produced chipped stone artifacts (crescents and Channel Island Amol and Channel Island Barbed points) diagnostic of early island Paleocoastal components. The bones of waterfowl and seabirds, fish, and marine mammals, along with small amounts of shellfish document a diverse subsistence strategy. These data support a relatively brief occupation during the wetter "winter" season (late fall to early spring), in an upland location several km from the open coast. When placed in the context of other Paleocoastal sites on the Channel Islands, CA-SRI-26 demonstrates diverse maritime subsistence strategies and a mix of seasonal and more sustained year-round island occupations. Our results add to knowledge about a distinctive island Paleocoastal culture that appears to be related to Western Stemmed Tradition sites widely scattered across western North America.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238866PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498104PMC
November 2020

Biogeographic problem-solving reveals the Late Pleistocene translocation of a short-faced bear to the California Channel Islands.

Sci Rep 2020 09 16;10(1):15172. Epub 2020 Sep 16.

Department of Anthropology, University of Oklahoma, Norman, OK, USA.

An accurate understanding of biodiversity of the past is critical for contextualizing biodiversity patterns and trends in the present. Emerging techniques are refining our ability to decipher otherwise cryptic human-mediated species translocations across the Quaternary, yet these techniques are often used in isolation, rather than part of an interdisciplinary hypothesis-testing toolkit, limiting their scope and application. Here we illustrate the use of such an integrative approach and report the occurrence of North America's largest terrestrial mammalian carnivore, the short-faced bear, Arctodus simus, from Daisy Cave (CA-SMI-261), an important early human occupation site on the California Channel Islands. We identified the specimen by corroborating morphological, protein, and mitogenomic lines of evidence, and evaluated the potential natural and anthropogenic mechanisms of its transport and deposition. While representing just a single specimen, our combination of techniques opened a window into the behavior of an enigmatic species, suggesting that A. simus was a wide-ranging scavenger utilizing terrestrial and marine carcasses. This discovery highlights the utility of bridging archaeological and paleontological datasets to disentangle complex biogeographic scenarios and reveal unexpected biodiversity for island systems worldwide.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-71572-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494929PMC
September 2020

Ancient genomes in South Patagonia reveal population movements associated with technological shifts and geography.

Nat Commun 2020 08 3;11(1):3868. Epub 2020 Aug 3.

Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.

Archaeological research documents major technological shifts among people who have lived in the southern tip of South America (South Patagonia) during the last thirteen millennia, including the development of marine-based economies and changes in tools and raw materials. It has been proposed that movements of people spreading culture and technology propelled some of these shifts, but these hypotheses have not been tested with ancient DNA. Here we report genome-wide data from 20 ancient individuals, and co-analyze it with previously reported data. We reveal that immigration does not explain the appearance of marine adaptations in South Patagonia. We describe partial genetic continuity since ~6600 BP and two later gene flows correlated with technological changes: one between 4700-2000 BP that affected primarily marine-based groups, and a later one impacting all <2000 BP groups. From ~2200-1200 BP, mixture among neighbors resulted in a cline correlated to geographic ordering along the coast.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-17656-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400565PMC
August 2020

Early isotopic evidence for maize as a staple grain in the Americas.

Sci Adv 2020 Jun 3;6(23):eaba3245. Epub 2020 Jun 3.

Ya'axché Conservation Trust, Punta Gorda Town, Belize.

Maize is a cultigen of global economic importance, but when it first became a staple grain in the Americas, was unknown and contested. Here, we report direct isotopic dietary evidence from 52 radiocarbon-dated human skeletons from two remarkably well-preserved rock-shelter contexts in the Maya Mountains of Belize spanning the past 10,000 years. Individuals dating before ~4700 calendar years before present (cal B.P.) show no clear evidence for the consumption of maize. Evidence for substantial maize consumption (~30% of total diet) appears in some individuals between 4700 and 4000 cal B.P. Isotopic evidence after 4000 cal B.P. indicates that maize became a persistently used staple grain comparable in dietary significance to later maize agriculturalists in the region (>70% of total diet). These data provide the earliest definitive evidence for maize as a staple grain in the Americas.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.aba3245DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269666PMC
June 2020

A Paleogenomic Reconstruction of the Deep Population History of the Andes.

Cell 2020 05 7;181(5):1131-1145.e21. Epub 2020 May 7.

Harvard Peabody Museum, Harvard University, Cambridge, MA 02138, USA.

There are many unanswered questions about the population history of the Central and South Central Andes, particularly regarding the impact of large-scale societies, such as the Moche, Wari, Tiwanaku, and Inca. We assembled genome-wide data on 89 individuals dating from ∼9,000-500 years ago (BP), with a particular focus on the period of the rise and fall of state societies. Today's genetic structure began to develop by 5,800 BP, followed by bi-directional gene flow between the North and South Highlands, and between the Highlands and Coast. We detect minimal admixture among neighboring groups between ∼2,000-500 BP, although we do detect cosmopolitanism (people of diverse ancestries living side-by-side) in the heartlands of the Tiwanaku and Inca polities. We also highlight cases of long-range mobility connecting the Andes to Argentina and the Northwest Andes to the Amazon Basin. VIDEO ABSTRACT.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2020.04.015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304944PMC
May 2020

The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean.

Nat Ecol Evol 2020 03 24;4(3):334-345. Epub 2020 Feb 24.

Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria-Gobierno de Cantabria-Banco Santander, Santander, Spain.

Steppe-pastoralist-related ancestry reached Central Europe by at least 2500 BC, whereas Iranian farmer-related ancestry was present in Aegean Europe by at least 1900 BC. However, the spread of these ancestries into the western Mediterranean, where they have contributed to many populations that live today, remains poorly understood. Here, we generated genome-wide ancient-DNA data from the Balearic Islands, Sicily and Sardinia, increasing the number of individuals with reported data from 5 to 66. The oldest individual from the Balearic Islands (~2400 BC) carried ancestry from steppe pastoralists that probably derived from west-to-east migration from Iberia, although two later Balearic individuals had less ancestry from steppe pastoralists. In Sicily, steppe pastoralist ancestry arrived by ~2200 BC, in part from Iberia; Iranian-related ancestry arrived by the mid-second millennium BC, contemporary to its previously documented spread to the Aegean; and there was large-scale population replacement after the Bronze Age. In Sardinia, nearly all ancestry derived from the island's early farmers until the first millennium BC, with the exception of an outlier from the third millennium BC, who had primarily North African ancestry and who-along with an approximately contemporary Iberian-documents widespread Africa-to-Europe gene flow in the Chalcolithic. Major immigration into Sardinia began in the first millennium BC and, at present, no more than 56-62% of Sardinian ancestry is from its first farmers. This value is lower than previous estimates, highlighting that Sardinia, similar to every other region in Europe, has been a stage for major movement and mixtures of people.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41559-020-1102-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080320PMC
March 2020

Ancient West African foragers in the context of African population history.

Nature 2020 01 22;577(7792):665-670. Epub 2020 Jan 22.

UCL Genetics Institute, University College London, London, UK.

Our knowledge of ancient human population structure in sub-Saharan Africa, particularly prior to the advent of food production, remains limited. Here we report genome-wide DNA data from four children-two of whom were buried approximately 8,000 years ago and two 3,000 years ago-from Shum Laka (Cameroon), one of the earliest known archaeological sites within the probable homeland of the Bantu language group. One individual carried the deeply divergent Y chromosome haplogroup A00, which today is found almost exclusively in the same region. However, the genome-wide ancestry profiles of all four individuals are most similar to those of present-day hunter-gatherers from western Central Africa, which implies that populations in western Cameroon today-as well as speakers of Bantu languages from across the continent-are not descended substantially from the population represented by these four people. We infer an Africa-wide phylogeny that features widespread admixture and three prominent radiations, including one that gave rise to at least four major lineages deep in the history of modern humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-1929-1DOI Listing
January 2020

The formation of human populations in South and Central Asia.

Science 2019 09;365(6457)

Earth Institute, University College Dublin, Dublin 4, Ireland.

By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization's decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aat7487DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822619PMC
September 2019

Ancient DNA from the skeletons of Roopkund Lake reveals Mediterranean migrants in India.

Nat Commun 2019 08 20;10(1):3670. Epub 2019 Aug 20.

CSIR Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India.

Situated at over 5,000 meters above sea level in the Himalayan Mountains, Roopkund Lake is home to the scattered skeletal remains of several hundred individuals of unknown origin. We report genome-wide ancient DNA for 38 skeletons from Roopkund Lake, and find that they cluster into three distinct groups. A group of 23 individuals have ancestry that falls within the range of variation of present-day South Asians. A further 14 have ancestry typical of the eastern Mediterranean. We also identify one individual with Southeast Asian-related ancestry. Radiocarbon dating indicates that these remains were not deposited simultaneously. Instead, all of the individuals with South Asian-related ancestry date to ~800 CE (but with evidence of being deposited in more than one event), while all other individuals date to ~1800 CE. These differences are also reflected in stable isotope measurements, which reveal a distinct dietary profile for the two main groups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-11357-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702210PMC
August 2019

Linking late Paleoindian stone tool technologies and populations in North, Central and South America.

PLoS One 2019 18;14(7):e0219812. Epub 2019 Jul 18.

Department of Anthropology, University of California at Santa Barbara, Santa Barbara, California, United States of America.

From the perspective of Central and South America, the peopling of the New World was a complex process lasting thousands of years and involving multiple waves of Pleistocene and early Holocene period immigrants entering into the neotropics. These Paleoindian colonists initially brought with them technologies developed for adaptation to environments and resources found in North America. As the ice age ended across the New World people adapted more generalized stone tools to exploit changing environments and resources. In the neotropics these changes would have been pronounced as patchy forests and grasslands gave way to broadleaf tropical forests. We document a late Pleistocene/early Holocene stone tool tradition from Belize, located in southern Mesoamerica. This represents the first endogenous Paleoindian stone tool technocomplex recovered from well dated stratigraphic contexts for Mesoamerica. Previously designated Lowe, these artifacts share multiple features with contemporary North and South American Paleoindian tool types. Once hafted, these bifaces appear to have served multiple functions for cutting, hooking, thrusting, or throwing. The tools were developed at a time of technological regionalization reflecting the diverse demands of a period of pronounced environmental change and population movement. Combined stratigraphic, technological, and population paleogenetic data suggests that there were strong ties between lowland neotropic regions at the onset of the Holocene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219812PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6638942PMC
March 2020

Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America.

Nature 2019 06 5;570(7760):236-240. Epub 2019 Jun 5.

Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

Much of the American Arctic was first settled 5,000 years ago, by groups of people known as Palaeo-Eskimos. They were subsequently joined and largely displaced around 1,000 years ago by ancestors of the present-day Inuit and Yup'ik. The genetic relationship between Palaeo-Eskimos and Native American, Inuit, Yup'ik and Aleut populations remains uncertain. Here we present genomic data for 48 ancient individuals from Chukotka, East Siberia, the Aleutian Islands, Alaska, and the Canadian Arctic. We co-analyse these data with data from present-day Alaskan Iñupiat and West Siberian populations and published genomes. Using methods based on rare-allele and haplotype sharing, as well as established techniques, we show that Palaeo-Eskimo-related ancestry is ubiquitous among people who speak Na-Dene and Eskimo-Aleut languages. We develop a comprehensive model for the Holocene peopling events of Chukotka and North America, and show that Na-Dene-speaking peoples, people of the Aleutian Islands, and Yup'ik and Inuit across the Arctic region all share ancestry from a single Palaeo-Eskimo-related Siberian source.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-019-1251-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6942545PMC
June 2019

Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa.

Science 2019 07 30;365(6448). Epub 2019 May 30.

Department of Anthropology, California State University, San Bernardino, CA 92407, USA.

How food production first entered eastern Africa ~5000 years ago and the extent to which people moved with livestock is unclear. We present genome-wide data from 41 individuals associated with Later Stone Age, Pastoral Neolithic (PN), and Iron Age contexts in what are now Kenya and Tanzania to examine the genetic impacts of the spreads of herding and farming. Our results support a multiphase model in which admixture between northeastern African-related peoples and eastern African foragers formed multiple pastoralist groups, including a genetically homogeneous PN cluster. Additional admixture with northeastern and western African-related groups occurred by the Iron Age. These findings support several movements of food producers while rejecting models of minimal admixture with foragers and of genetic differentiation between makers of distinct PN artifacts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aaw6275DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827346PMC
July 2019

The genomic history of the Iberian Peninsula over the past 8000 years.

Science 2019 03;363(6432):1230-1234

Departamento de Prehistoria e Historia Antigua, Universidad Nacional de Educación a Distancia, Valencia, Spain.

We assembled genome-wide data from 271 ancient Iberians, of whom 176 are from the largely unsampled period after 2000 BCE, thereby providing a high-resolution time transect of the Iberian Peninsula. We document high genetic substructure between northwestern and southeastern hunter-gatherers before the spread of farming. We reveal sporadic contacts between Iberia and North Africa by ~2500 BCE and, by ~2000 BCE, the replacement of 40% of Iberia's ancestry and nearly 100% of its Y-chromosomes by people with Steppe ancestry. We show that, in the Iron Age, Steppe ancestry had spread not only into Indo-European-speaking regions but also into non-Indo-European-speaking ones, and we reveal that present-day Basques are best described as a typical Iron Age population without the admixture events that later affected the rest of Iberia. Additionally, we document how, beginning at least in the Roman period, the ancestry of the peninsula was transformed by gene flow from North Africa and the eastern Mediterranean.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aav4040DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6436108PMC
March 2019

Reconstructing the Deep Population History of Central and South America.

Cell 2018 11 8;175(5):1185-1197.e22. Epub 2018 Nov 8.

Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany.

We report genome-wide ancient DNA from 49 individuals forming four parallel time transects in Belize, Brazil, the Central Andes, and the Southern Cone, each dating to at least ∼9,000 years ago. The common ancestral population radiated rapidly from just one of the two early branches that contributed to Native Americans today. We document two previously unappreciated streams of gene flow between North and South America. One affected the Central Andes by ∼4,200 years ago, while the other explains an affinity between the oldest North American genome associated with the Clovis culture and the oldest Central and South Americans from Chile, Brazil, and Belize. However, this was not the primary source for later South Americans, as the other ancient individuals derive from lineages without specific affinity to the Clovis-associated genome, suggesting a population replacement that began at least 9,000 years ago and was followed by substantial population continuity in multiple regions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2018.10.027DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6327247PMC
November 2018

Fatty acid specific δ13C values reveal earliest Mediterranean cheese production 7,200 years ago.

PLoS One 2018 5;13(9):e0202807. Epub 2018 Sep 5.

Department of Geosciences, The Pennsylvania State University, University Park, PA, United States of America.

The earliest evidence for cheese production in the Mediterranean is revealed by stable carbon isotope analyses of individual fatty acids in pottery residues from the Dalmatian coast of Croatia. Lipid residue data indicate the presence of milk in the earliest pottery, Impressed Ware, by 5700 cal. BCE (7700 BP). In contrast, by 5200 cal BCE (7200 BP), milk was common in refined Figulina pottery, meat was mostly associated with Danilo ware, cheese occurred in Rhyta, and sieves contained fermented dairy, representing strong links between specific function and stylistically distinctive pottery vessels. Genetic data indicate the prevalence of lactose intolerance among early farming populations. However, young children are lactase persistent until after weaning and could consume milk as a relatively pathogen-free and nutrient rich food source, enhancing their chances of survival into adulthood. Fermentation of milk into yogurt and cheese decreases lactose content. The evidence for fermented dairy products by 5200 cal BCE indicates a larger proportion of the population was able to consume dairy products and benefit from their significant nutritional advantages. We suggest that milk and cheese production among Europe's early farmers reduced infant mortality and helped stimulate demographic shifts that propelled farming communities to expand to northern latitudes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0202807PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124750PMC
February 2019

Archaeogenomic evidence from the southwestern US points to a pre-Hispanic scarlet macaw breeding colony.

Proc Natl Acad Sci U S A 2018 08 13;115(35):8740-8745. Epub 2018 Aug 13.

Department of Anthropology, The Pennsylvania State University, University Park, PA 16802;

Hundreds of scarlet macaw () skeletons have been recovered from archaeological contexts in the southwestern United States and northwestern Mexico (SW/NW). The location of these skeletons, >1,000 km outside their Neotropical endemic range, has suggested a far-reaching pre-Hispanic acquisition network. Clear evidence for scarlet macaw breeding within this network is only known from the settlement of Paquimé in NW dating between 1250 and 1450 CE. Although some scholars have speculated on the probable existence of earlier breeding centers in the SW/NW region, there has been no supporting evidence. In this study, we performed an ancient DNA analysis of scarlet macaws recovered from archaeological sites in Chaco Canyon and the contemporaneous Mimbres area of New Mexico. All samples were directly radiocarbon dated between 900 and 1200 CE. We reconstructed complete or near-complete mitochondrial genome sequences of 14 scarlet macaws from five different sites. We observed remarkably low genetic diversity in this sample, consistent with breeding of a small founder population translocated outside their natural range. Phylogeographic comparisons of our ancient DNA mitogenomes with mitochondrial sequences from macaws collected during the last 200 years from their endemic Neotropical range identified genetic affinity between the ancient macaws and a single rare haplogroup (Haplo6) observed only among wild macaws in Mexico and northern Guatemala. Our results suggest that people at an undiscovered pre-Hispanic settlement dating between 900 and 1200 CE managed a macaw breeding colony outside their endemic range and distributed these symbolically important birds through the SW.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1805856115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126748PMC
August 2018

Early metal use and crematory practices in the American Southeast.

Proc Natl Acad Sci U S A 2018 08 30;115(33):E7672-E7679. Epub 2018 Jul 30.

Division of Anthropology, American Museum of Natural History, New York, NY 10024

Long-distance exchange of copper objects during the Archaic Period (ca. 8000-3000 cal B.P.) is a bellwether of emergent social complexity in the Eastern Woodlands. Originating from the Great Lakes, the Canadian Maritimes, and the Appalachian Mountains, Archaic-age copper is found in significant amounts as far south as Tennessee and in isolated pockets at major trade centers in Louisiana but is absent from most of the southeastern United States. Here we report the discovery of a copper band found with the cremated remains of at least seven individuals buried in the direct center of a Late Archaic shell ring located in coastal Georgia. Late Archaic shell rings are massive circular middens thought to be constructed, in part, during large-scale ritual gatherings and feasting events. The exotic copper and cremated remains are unique in coastal South Carolina and Georgia where Archaic-age cremations are conspicuously absent and no other Archaic copper objects have been reported. Elemental data produced through laser ablation inductively coupled plasma mass spectrometry shows the copper originated from the Great Lakes, effectively extending Archaic copper exchange almost 1,000 km beyond its traditional boundaries. Similarities in mortuary practices and the presence of copper originating from the Great Lakes reveal the presence of long-distance exchange relations spanning vast portions of the eastern United States and suggest an unexpected level of societal complexity at shell ring localities. These findings are consistent with the hypothesis that elite actors solidified their positions through ritual gatherings and the long-distance exchange of exotic objects during the Archaic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1808819115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099914PMC
August 2018

High-precision chronology for Central American maize diversification from El Gigante rockshelter, Honduras.

Proc Natl Acad Sci U S A 2017 08 7;114(34):9026-9031. Epub 2017 Aug 7.

Department of Anthropology, The Pennsylvania State University, University Park, PA 16802;

The first steps toward maize ( subspecies ) domestication occurred in the Balsas region of Mexico by ∼9,000 calendar years B.P. (cal B.P.), but it remains unclear when maize was productive enough to be a staple grain in the Americas. Molecular and microbotanical data provide a partial picture of the timing and nature of morphological change, with genetic data indicating that alleles for some domestication traits were not yet fixed by 5,300 cal B.P. in the highlands of Mexico. Here, we report 88 radiocarbon dates on the botanical remains from El Gigante rockshelter (Honduras) to establish a Bayesian chronology over the past ∼11,000 y spanning the transition to maize-based food production. Botanical remains are remarkably well preserved and include over 10,000 maize macrofossils. We directly dated 37 maize cobs to establish the appearance and local change of maize at the site. Cobs are common in deposits dating between 4,340 and 4,020 cal B.P., and again between 2,350 and 980 cal B.P. The earliest cobs appear robustly domesticated, having 10-14 rows, suggesting strong selection for increased yield. The later cobs are comparable to these earliest ones, but show clear emergence of diverse traits, including increased cob width, rachis segment length, and cupule width. Our results indicate that domesticated landraces of maize productive enough to be a staple grain existed in Central America by 4,300 cal B.P.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1705052114DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576806PMC
August 2017

Archaeogenomic evidence reveals prehistoric matrilineal dynasty.

Nat Commun 2017 02 21;8:14115. Epub 2017 Feb 21.

Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

For societies with writing systems, hereditary leadership is documented as one of the hallmarks of early political complexity and governance. In contrast, it is unknown whether hereditary succession played a role in the early formation of prehistoric complex societies that lacked writing. Here we use an archaeogenomic approach to identify an elite matriline that persisted between 800 and 1130 CE in Chaco Canyon, the centre of an expansive prehistoric complex society in the Southwestern United States. We show that nine individuals buried in an elite crypt at Pueblo Bonito, the largest structure in the canyon, have identical mitochondrial genomes. Analyses of nuclear genome data from six samples with the highest DNA preservation demonstrate mother-daughter and grandmother-grandson relationships, evidence for a multigenerational matrilineal descent group. Together, these results demonstrate the persistence of an elite matriline in Chaco for ∼330 years.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms14115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5321759PMC
February 2017

Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska.

Proc Natl Acad Sci U S A 2016 08 1;113(33):9310-4. Epub 2016 Aug 1.

Alaska Stable Isotope Facility, Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775; School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775.

Relict woolly mammoth (Mammuthus primigenius) populations survived on several small Beringian islands for thousands of years after mainland populations went extinct. Here we present multiproxy paleoenvironmental records to investigate the timing, causes, and consequences of mammoth disappearance from St. Paul Island, Alaska. Five independent indicators of extinction show that mammoths survived on St. Paul until 5,600 ± 100 y ago. Vegetation composition remained stable during the extinction window, and there is no evidence of human presence on the island before 1787 CE, suggesting that these factors were not extinction drivers. Instead, the extinction coincided with declining freshwater resources and drier climates between 7,850 and 5,600 y ago, as inferred from sedimentary magnetic susceptibility, oxygen isotopes, and diatom and cladoceran assemblages in a sediment core from a freshwater lake on the island, and stable nitrogen isotopes from mammoth remains. Contrary to other extinction models for the St. Paul mammoth population, this evidence indicates that this mammoth population died out because of the synergistic effects of shrinking island area and freshwater scarcity caused by rising sea levels and regional climate change. Degradation of water quality by intensified mammoth activity around the lake likely exacerbated the situation. The St. Paul mammoth demise is now one of the best-dated prehistoric extinctions, highlighting freshwater limitation as an overlooked extinction driver and underscoring the vulnerability of small island populations to environmental change, even in the absence of human influence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1604903113DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995940PMC
August 2016

Characterization of Archaeological Sediments Using Fourier Transform Infrared (FT-IR) and Portable X-ray Fluorescence (pXRF): An Application to Formative Period Pyro-Industrial Sites in Pacific Coastal Southern Chiapas, Mexico.

Appl Spectrosc 2016 Jan;70(1):110-27

Department of Anthropology, Pennsylvania State University, University Park, PA, USA.

Archaeological sediments from mounds within the mangrove zone of far-southern Pacific coastal Chiapas, Mexico, are characterized in order to test the hypothesis that specialized pyro-technological activities of the region's prehistoric inhabitants (salt and ceramic production) created the accumulations visible today. Fourier transform infrared spectroscopy (FT-IR) is used to characterize sediment mineralogy, while portable X-ray fluorescence (pXRF) is used to determine elemental concentrations. Elemental characterization of natural sediments by both instrumental neutron activation analysis (INAA) and pXRF also contribute to understanding of processes that created the archaeological deposits. Radiocarbon dates combined with typological analysis of ceramics indicate that pyro-industrial activity in the mangrove zone peaked during the Late Formative and Terminal Formative periods, when population and monumental activity on the coastal plain and piedmont were also at their peaks.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/0003702815617124DOI Listing
January 2016

Bayesian chronological analyses consistent with synchronous age of 12,835-12,735 Cal B.P. for Younger Dryas boundary on four continents.

Proc Natl Acad Sci U S A 2015 Aug 27;112(32):E4344-53. Epub 2015 Jul 27.

GeoScience Consulting, Dewey, AZ 86327.

The Younger Dryas impact hypothesis posits that a cosmic impact across much of the Northern Hemisphere deposited the Younger Dryas boundary (YDB) layer, containing peak abundances in a variable assemblage of proxies, including magnetic and glassy impact-related spherules, high-temperature minerals and melt glass, nanodiamonds, carbon spherules, aciniform carbon, platinum, and osmium. Bayesian chronological modeling was applied to 354 dates from 23 stratigraphic sections in 12 countries on four continents to establish a modeled YDB age range for this event of 12,835-12,735 Cal B.P. at 95% probability. This range overlaps that of a peak in extraterrestrial platinum in the Greenland Ice Sheet and of the earliest age of the Younger Dryas climate episode in six proxy records, suggesting a causal connection between the YDB impact event and the Younger Dryas. Two statistical tests indicate that both modeled and unmodeled ages in the 30 records are consistent with synchronous deposition of the YDB layer within the limits of dating uncertainty (∼ 100 y). The widespread distribution of the YDB layer suggests that it may serve as a datum layer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1507146112DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538614PMC
August 2015

Early procurement of scarlet macaws and the emergence of social complexity in Chaco Canyon, NM.

Proc Natl Acad Sci U S A 2015 Jul 22;112(27):8238-43. Epub 2015 Jun 22.

Department of Anthropology, The Pennsylvania State University, University Park, PA 16802;

High-precision accelerator mass spectrometer (AMS) (14)C dates of scarlet macaw (Ara macao) skeletal remains provide the first direct evidence from Chaco Canyon in northwestern New Mexico that these Neotropical birds were procured from Mesoamerica by Pueblo people as early as ∼ A.D. 900-975. Chaco was a prominent prehistoric Pueblo center with a dense concentration of multistoried great houses constructed from the 9th through early 12th centuries. At the best known great house of Pueblo Bonito, unusual burial crypts and significant quantities of exotic and symbolically important materials, including scarlet macaws, turquoise, marine shell, and cacao, suggest societal complexity unprecedented elsewhere in the Puebloan world. Scarlet macaws are known markers of social and political status among the Pueblos. New AMS (14)C-dated scarlet macaw remains from Pueblo Bonito demonstrate that these birds were acquired persistently from Mesoamerica between A.D. 900 and 1150. Most of the macaws date before the hypothesized apogeal Chacoan period (A.D. 1040-1110) to which they are commonly attributed. The 10th century acquisition of these birds is consistent with the hypothesis that more formalized status hierarchies developed with significant connections to Mesoamerica before the post-A.D. 1040 architectural florescence in Chaco Canyon.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1509825112DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500242PMC
July 2015

Early Americans: misstated results.

Science 2014 Jul 24;345(6195):390. Epub 2014 Jul 24.

Department of Anthropology and Institutes of Energy and the Environment, Pennsylvania State University, University Park, PA 16802, USA.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.345.6195.390-aDOI Listing
July 2014

Late Pleistocene human skeleton and mtDNA link Paleoamericans and modern Native Americans.

Science 2014 May;344(6185):750-4

Centre for AMS C, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Centre for GeoGenetics, Natural History Museum of Denmark, Geological Museum, Copenhagen, Denmark.

Because of differences in craniofacial morphology and dentition between the earliest American skeletons and modern Native Americans, separate origins have been postulated for them, despite genetic evidence to the contrary. We describe a near-complete human skeleton with an intact cranium and preserved DNA found with extinct fauna in a submerged cave on Mexico's Yucatan Peninsula. This skeleton dates to between 13,000 and 12,000 calendar years ago and has Paleoamerican craniofacial characteristics and a Beringian-derived mitochondrial DNA (mtDNA) haplogroup (D1). Thus, the differences between Paleoamericans and Native Americans probably resulted from in situ evolution rather than separate ancestry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1252619DOI Listing
May 2014
-->