Publications by authors named "Breland F Crudup"

3 Publications

  • Page 1 of 1

Allele-specific variation at APOE increases nonalcoholic fatty liver disease and obesity but decreases risk of Alzheimer's disease and myocardial infarction.

Hum Mol Genet 2021 Jul;30(15):1443-1456

Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA.

Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is highly correlated with metabolic disease. NAFLD results from environmental exposures acting on a susceptible polygenic background. This study performed the largest multiethnic investigation of exonic variation associated with NAFLD and correlated metabolic traits and diseases. An exome array meta-analysis was carried out among eight multiethnic population-based cohorts (n = 16 492) with computed tomography (CT) measured hepatic steatosis. A fixed effects meta-analysis identified five exome-wide significant loci (P < 5.30 × 10-7); including a novel signal near TOMM40/APOE. Joint analysis of TOMM40/APOE variants revealed the TOMM40 signal was attributed to APOE rs429358-T; APOE rs7412 was not associated with liver attenuation. Moreover, rs429358-T was associated with higher serum alanine aminotransferase, liver steatosis, cirrhosis, triglycerides and obesity; as well as, lower cholesterol and decreased risk of myocardial infarction and Alzheimer's disease (AD) in phenome-wide association analyses in the Michigan Genomics Initiative, United Kingdom Biobank and/or public datasets. These results implicate APOE in imaging-based identification of NAFLD. This association may or may not translate to nonalcoholic steatohepatitis; however, these results indicate a significant association with advanced liver disease and hepatic cirrhosis. These findings highlight allelic heterogeneity at the APOE locus and demonstrate an inverse link between NAFLD and AD at the exome level in the largest analysis to date.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
July 2021

A Noncoding Variant Near PPP1R3B Promotes Liver Glycogen Storage and MetS, but Protects Against Myocardial Infarction.

J Clin Endocrinol Metab 2021 01;106(2):372-387

Brigham and Women's Hospital, Havard University, Boston, MA, USA.

Context: Glycogen storage diseases are rare. Increased glycogen in the liver results in increased attenuation.

Objective: Investigate the association and function of a noncoding region associated with liver attenuation but not histologic nonalcoholic fatty liver disease.

Design: Genetics of Obesity-associated Liver Disease Consortium.

Setting: Population-based.

Main Outcome: Computed tomography measured liver attenuation.

Results: Carriers of rs4841132-A (frequency 2%-19%) do not show increased hepatic steatosis; they have increased liver attenuation indicative of increased glycogen deposition. rs4841132 falls in a noncoding RNA LOC157273 ~190 kb upstream of PPP1R3B. We demonstrate that rs4841132-A increases PPP1R3B through a cis genetic effect. Using CRISPR/Cas9 we engineered a 105-bp deletion including rs4841132-A in human hepatocarcinoma cells that increases PPP1R3B, decreases LOC157273, and increases glycogen perfectly mirroring the human disease. Overexpression of PPP1R3B or knockdown of LOC157273 increased glycogen but did not result in decreased LOC157273 or increased PPP1R3B, respectively, suggesting that the effects may not all occur via affecting RNA levels. Based on electronic health record (EHR) data, rs4841132-A associates with all components of the metabolic syndrome (MetS). However, rs4841132-A associated with decreased low-density lipoprotein (LDL) cholesterol and risk for myocardial infarction (MI). A metabolic signature for rs4841132-A includes increased glycine, lactate, triglycerides, and decreased acetoacetate and beta-hydroxybutyrate.

Conclusions: These results show that rs4841132-A promotes a hepatic glycogen storage disease by increasing PPP1R3B and decreasing LOC157273. rs4841132-A promotes glycogen accumulation and development of MetS but lowers LDL cholesterol and risk for MI. These results suggest that elevated hepatic glycogen is one cause of MetS that does not invariably promote MI.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
January 2021

Properties of the high-spin heme of MauG are altered by binding of preMADH at the protein surface 40 Å away.

FEBS Lett 2017 06 23;591(11):1566-1572. Epub 2017 May 23.

Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA.

The diheme enzyme MauG catalyzes oxidative post-translational modifications of a protein substrate, precursor protein of methylamine dehydrogenase (preMADH), that binds to the surface of MauG. The high-spin heme iron of MauG is located 40 Å from preMADH. The ferric heme is an equilibrium of five- and six-coordinate states. PreMADH binding increases the proportion of five-coordinate heme three-fold. On reaction of MauG with H O both hemes become Fe . In the absence of preMADH the hemes autoreduce to ferric in a multistep process involving multiple electron and proton transfers. Binding of preMADH in the absence of catalysis alters the mechanism of autoreduction of the ferryl heme. Thus, substrate binding alters the environment in the distal heme pocket of the high-spin heme over very long distance.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
June 2017