Publications by authors named "Boris Keren"

174 Publications

germline variants result in aberrant neurodevelopment and growth.

HGG Adv 2021 Jul 5;2(3). Epub 2021 Apr 5.

Center for Human Genetics and Department of Genetics and Genome Sciences, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA.

Protein-tyrosine phosphatases (PTPs) are pleomorphic regulators of eukaryotic cellular responses to extracellular signals that function by modulating the phosphotyrosine of specific proteins. A handful of PTPs have been implicated in germline and somatic human disease. Using exome sequencing, we identified missense and truncating variants in in six unrelated individuals with varying degrees of intellectual disability or developmental delay. The variants occurred in all five subjects in whom segregation analysis was possible. Recurring features include postnatal growth deficiency or excess, seizures, and, less commonly, structural CNS, heart, or skeletal anomalies. is a widely expressed protein tyrosine phosphatase that regulates neuronal cell homeostasis by protecting neurons against apoptosis. We suggest that pathogenic variants in confer risk for growth and cognitive abnormalities in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xhgg.2021.100033DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8439436PMC
July 2021

Dysfunctional Homozygous VRK1-D263G Variant Impairs the Assembly of Cajal Bodies and DNA Damage Response in Hereditary Spastic Paraplegia.

Neurol Genet 2021 Oct 2;7(5):e624. Epub 2021 Sep 2.

Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France.

Background And Objectives: To conduct a genetic and molecular functional study of a family with members affected of hereditary spastic paraplegia (HSP) of unknown origin and carrying a novel pathogenic vaccinia-related kinase 1 (1) variant.

Methods: Whole-exome sequencing was performed in 2 patients, and their parents diagnosed with HSP. The novel 1 variant was detected by whole-exome sequencing, molecularly modeled and biochemically characterized in kinase assays. Functionally, we studied the role of this 1 variant in DNA damage response and its effect on the assembly of Cajal bodies (CBs).

Results: We have identified a very rare homozygous variant VRK1-D263G with a neurologic phenotype associated with HSP and moderate intellectual disability. The molecular modeling of this VRK1 variant protein predicted an alteration in the folding of a loop that interferes with the access to the kinase catalytic site. The VRK1-D263G variant is kinase inactive and does not phosphorylate histones H2AX and H3, transcription factors activating transcription factor 2 and p53, coilin needed for assembly of CBs, and p53 binding protein 1, a DNA repair protein. Functionally, this variant protein impairs CB formation and the DNA damage response.

Discussion: This report expands the neurologic spectrum of neuromotor syndromes associated with a new and rare variant, representing a novel pathogenic participant in complicated HSP and demonstrates that CBs and the DNA damage response are impaired in these patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/NXG.0000000000000624DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8422991PMC
October 2021

Phenotype associated with TAF2 biallelic mutations: A clinical description of four individuals and review of the literature.

Eur J Med Genet 2021 Aug 30;64(11):104323. Epub 2021 Aug 30.

APHP, Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et GHUEP Hôpital Trousseau, Sorbonne Université, GRC "Déficience Intellectuelle et Autisme", Paris, France. Electronic address:

Transcription factor IID is a multimeric protein complex that is essential for the initiation of transcription by RNA polymerase II. One of its critical components, the TATA-binding protein-associated factor 2, is encoded by the gene TAF2. Pathogenic variants of this gene have been shown to be responsible for the Mental retardation, autosomal recessive 40 syndrome. This syndrome is characterized by severe intellectual disability, postnatal microcephaly, pyramidal signs and thin corpus callosum. Until now, only three families have been reported separately. Here we report four individuals, from two unrelated families, who present with severe intellectual disability and global developmental delay, postnatal microcephaly, feet deformities and thin corpus callosum and who carry homozygous TAF2 missense variants detected by Exome Sequencing. Taken together, our findings and those of previously reported subjects allow us to further delineate the clinical phenotype associated with TAF2 biallelic mutations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmg.2021.104323DOI Listing
August 2021

Clinical and molecular delineation of PUS3-associated neurodevelopmental disorders.

Clin Genet 2021 Aug 20. Epub 2021 Aug 20.

Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark.

Biallelic variants in PUS3 have recently been recognized as a rare cause of neurodevelopmental disorders. Pseudouridine synthase-3 encoded by PUS3 is an enzyme important for modification of various RNAs, including transfer RNA (tRNA). Here we present the clinical and genetic features of 21 individuals with biallelic PUS3 variants: seven new and 14 previously reported individuals, where clinical features of two were updated. The clinical and genetic information were collected through collaborations or by literature search. All individuals were characterized by the local clinicians and the gene variants were identified by next generation sequencing (NGS) based methodologies. The clinical picture was dominated by global developmental delay, epilepsy, hypotonia and microcephaly. Gray sclera, which has previously been suggested to be a characteristic feature of PUS3-associated phenotypes, was reported in only seven individuals. The patients had some dysmorphic facial features, but a recognizable gestalt was not observed. In conclusion, homozygous and compound heterozygous PUS3 variants lead to a rare neurodevelopmental disorder. Further functional studies are necessary to understand involvement of PUS3 and tRNA biogenesis in normal and abnormal brain development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cge.14051DOI Listing
August 2021

Tremor-like subcortical myoclonus in STXBP1 encephalopathy.

Eur J Paediatr Neurol 2021 Jul 3;34:62-66. Epub 2021 Jul 3.

APHP-Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière and Hôpital Armand Trousseau, Paris, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France.

The phenotypic spectrum of STXBP1-related encephalopathy ranges from infantile epileptic encephalopathy to intellectual disability with nonsyndromic or absent epilepsy. Although being frequently reported, the tremor associated with STXBP1 has not been fully characterized to date. The aim of our study was to describe it. We recruited patients with intellectual disability due to STXBP1 variants, regardless of their epileptic phenotype, who had tremor at examination and who underwent neurophysiological testing including polymyographic registration of upper limbs muscles activity at rest, during posture maintenance and action. Six patients met the inclusion criteria over four years. Clinically, all had a postural and action distal tremor increased by emotions. Neurophysiological recordings showed a specific myoclonus pattern and were highly suggestive of a subcortical generator. The tremor-like observed in STXBP1 encephalopathy is due to a subcortical pseudo-rhythmic myoclonus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpn.2021.06.005DOI Listing
July 2021

Clustered mutations in the GRIK2 kainate receptor subunit gene underlie diverse neurodevelopmental disorders.

Am J Hum Genet 2021 09 9;108(9):1692-1709. Epub 2021 Aug 9.

Department of Clinical Genetics, Leiden University Medical Center, 2333 Leiden, the Netherlands.

Kainate receptors (KARs) are glutamate-gated cation channels with diverse roles in the central nervous system. Bi-allelic loss of function of the KAR-encoding gene GRIK2 causes a nonsyndromic neurodevelopmental disorder (NDD) with intellectual disability and developmental delay as core features. The extent to which mono-allelic variants in GRIK2 also underlie NDDs is less understood because only a single individual has been reported previously. Here, we describe an additional eleven individuals with heterozygous de novo variants in GRIK2 causative for neurodevelopmental deficits that include intellectual disability. Five children harbored recurrent de novo variants (three encoding p.Thr660Lys and two p.Thr660Arg), and four children and one adult were homozygous for a previously reported variant (c.1969G>A [p.Ala657Thr]). Individuals with shared variants had some overlapping behavioral and neurological dysfunction, suggesting that the GRIK2 variants are likely pathogenic. Analogous mutations introduced into recombinant GluK2 KAR subunits at sites within the M3 transmembrane domain (encoding p.Ala657Thr, p.Thr660Lys, and p.Thr660Arg) and the M3-S2 linker domain (encoding p.Ile668Thr) had complex effects on functional properties and membrane localization of homomeric and heteromeric KARs. Both p.Thr660Lys and p.Thr660Arg mutant KARs exhibited markedly slowed gating kinetics, similar to p.Ala657Thr-containing receptors. Moreover, we observed emerging genotype-phenotype correlations, including the presence of severe epilepsy in individuals with the p.Thr660Lys variant and hypomyelination in individuals with either the p.Thr660Lys or p.Thr660Arg variant. Collectively, these results demonstrate that human GRIK2 variants predicted to alter channel function are causative for early childhood development disorders and further emphasize the importance of clarifying the role of KARs in early nervous system development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.07.007DOI Listing
September 2021

Integrative approach to interpret DYRK1A variants, leading to a frequent neurodevelopmental disorder.

Genet Med 2021 Aug 3. Epub 2021 Aug 3.

Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and Reference Center for Developmental Disorders, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France.

Purpose: DYRK1A syndrome is among the most frequent monogenic forms of intellectual disability (ID). We refined the molecular and clinical description of this disorder and developed tools to improve interpretation of missense variants, which remains a major challenge in human genetics.

Methods: We reported clinical and molecular data for 50 individuals with ID harboring DYRK1A variants and developed (1) a specific DYRK1A clinical score; (2) amino acid conservation data generated from 100 DYRK1A sequences across different taxa; (3) in vitro overexpression assays to study level, cellular localization, and kinase activity of DYRK1A mutant proteins; and (4) a specific blood DNA methylation signature.

Results: This integrative approach was successful to reclassify several variants as pathogenic. However, we questioned the involvement of some others, such as p.Thr588Asn, still reported as likely pathogenic, and showed it does not cause an obvious phenotype in mice.

Conclusion: Our study demonstrated the need for caution when interpreting variants in DYRK1A, even those occurring de novo. The tools developed will be useful to interpret accurately the variants identified in the future in this gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01263-1DOI Listing
August 2021

Delineating the genotypic and phenotypic spectrum of -related neurodevelopmental disorders.

J Med Genet 2021 Jul 28. Epub 2021 Jul 28.

GeneDx, Gaithersburg, Maryland, USA.

Background: Variants in have recently been reported to cause a neurodevelopmental disorder with hypotonia, seizures and impaired language; however, only six variants have been reported and the clinical characteristics have only broadly been defined.

Methods: Molecular and clinical data were collected from clinical and research cohorts. Massive parallel sequencing was performed and identified individuals with a related neurodevelopmental disorder.

Results: We identified 13 novel missense variants in in 22 unpublished cases, of which 18 were confirmed to have a de novo variant. In addition, we reviewed the genotypes and phenotypes of previously reported and new cases with variants (n=35 cases). All variants identified are missense, and the majority of likely pathogenic and pathogenic variants are located in or near the C-terminal HECT domain (88.2%). We identified several clustered variants and four recurrent variants (p.(Arg1191Gln);p.(Asn1199Lys);p.(Phe1327Ser);p.(Arg1330Trp)). Two variants, (p.(Arg1191Gln);p.(Arg1330Trp)), accounted for 22.9% and 20% of cases, respectively. Clinical characterisation suggests complete penetrance for hypotonia with or without spasticity (100%), developmental delay/intellectual disability (100%) and developmental language disorder (100%). Other common features are behavioural problems (88.9%), vision problems (83.9%), motor coordination/movement (75%) and gastrointestinal issues (70%). Seizures were present in 61.3% of individuals. Genotype-phenotype analysis shows that HECT domain variants are more frequently associated with cortical visual impairment and gastrointestinal issues. Seizures were only observed in individuals with variants in or near the HECT domain.

Conclusion: We provide a comprehensive review and expansion of the genotypic and phenotypic spectrum of disorders, aiding future molecular and clinical diagnosis and management.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2021-107871DOI Listing
July 2021

Recurrent missense variants in can cause syndromic intellectual disability.

J Med Genet 2021 Jun 28. Epub 2021 Jun 28.

Department of Translational Medicine, Section of Pediatrics, Federico II University Hospital, Naples, Italy.

Purpose: Binding proteins (G-proteins) mediate signalling pathways involved in diverse cellular functions and comprise Gα and Gβγ units. Human diseases have been reported for all five Gβ proteins. A missense variant in was recently reported in one individual with developmental delay/intellectual disability (DD/ID) and dysmorphism. We aim to confirm as a neurodevelopmental disease gene, and elucidate the -associated neurodevelopmental phenotype in a patient cohort.

Methods: We discovered a variant in the index case via exome sequencing and sought individuals with variants via international data-sharing initiatives. modelling of the variants was assessed, along with multiple lines of evidence in keeping with American College of Medical Genetics and Genomics guidelines for interpretation of sequence variants.

Results: We identified 12 unrelated individuals with five missense variants in , four of which are recurrent: p.(Ala73Thr), p.(Gly77Arg), p.(Lys89Glu) and p.(Lys89Thr). All individuals have DD/ID with variable dysmorphism and extraneurologic features. The variants are located at the universally conserved shared interface with the Gα subunit, which modelling suggests weaken this interaction.

Conclusion: Missense variants in cause a congenital neurodevelopmental disorder with variable syndromic features, broadening the spectrum of multisystem phenotypes associated with variants in genes encoding G-proteins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2020-107462DOI Listing
June 2021

SCN1A-related epilepsy with recessive inheritance: Two further families.

Eur J Paediatr Neurol 2021 Jul 5;33:121-124. Epub 2021 Jun 5.

APHP.Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié Salpêtrière, Paris, France; Sorbonne Université, Institut du Cerveau, ICM, Inserm U1127, CNRS UMR 7225, Paris, France. Electronic address:

Background: Variants in SCN1A gene, encoding the voltage-gated sodium channel Na1.1, are associated with distinct epilepsy syndromes ranging from the relatively benign genetic epilepsy with febrile seizures plus (GEFS+) to Dravet syndrome, a severe developmental and epileptic encephalopathy (DEE). Most SCN1A pathogenic variants are heterozygous changes inherited in a dominant or de novo inheritance and many cause a loss-of-function of one allele. To date, recessive inheritance has been suggested in only two families with affected children harboring homozygous SCN1A missense variants while their heterozygous parents were asymptomatic. The aim of this report is to describe two additional families in which affected individuals have biallelic SCN1A variants possibly explaining their phenotype.

Methods And Results: We report two novel homozygous SCN1A missense variants in two patients from related parents. Both patients had fever-sensitive epilepsy beginning in the first months of life, followed by afebrile seizures, without severe cognitive impairment. Parents were asymptomatic. Next generation sequencing excluded a pathogenic variant in other genes involved in DEE. Estimation of pathogenicity scores by in-silico tools suggests that the impact of these SCN1A variants is less damaging than that of dominant pathogenic variants.

Conclusion: This study provides additional evidence that homozygous variants in SCN1A can cause GEFS+. This recessive inheritance would imply that hypomorphic variants may not necessarily cause epilepsy at the heterozygous state but may decrease the seizure threshold when combined.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpn.2021.05.018DOI Listing
July 2021

Rare variants in KDR, encoding VEGF Receptor 2, are associated with tetralogy of Fallot.

Genet Med 2021 Jun 10. Epub 2021 Jun 10.

University of Nottingham, Queen's Medical Centre, Nottingham, UK.

Purpose: Rare genetic variants in KDR, encoding the vascular endothelial growth factor receptor 2 (VEGFR2), have been reported in patients with tetralogy of Fallot (TOF). However, their role in disease causality and pathogenesis remains unclear.

Methods: We conducted exome sequencing in a familial case of TOF and large-scale genetic studies, including burden testing, in >1,500 patients with TOF. We studied gene-targeted mice and conducted cell-based assays to explore the role of KDR genetic variation in the etiology of TOF.

Results: Exome sequencing in a family with two siblings affected by TOF revealed biallelic missense variants in KDR. Studies in knock-in mice and in HEK 293T cells identified embryonic lethality for one variant when occurring in the homozygous state, and a significantly reduced VEGFR2 phosphorylation for both variants. Rare variant burden analysis conducted in a set of 1,569 patients of European descent with TOF identified a 46-fold enrichment of protein-truncating variants (PTVs) in TOF cases compared to controls (P = 7 × 10).

Conclusion: Rare KDR variants, in particular PTVs, strongly associate with TOF, likely in the setting of different inheritance patterns. Supported by genetic and in vivo and in vitro functional analysis, we propose loss-of-function of VEGFR2 as one of the mechanisms involved in the pathogenesis of TOF.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01212-yDOI Listing
June 2021

Characterization of PARP6 Function in Knockout Mice and Patients with Developmental Delay.

Cells 2021 May 22;10(6). Epub 2021 May 22.

Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97210, USA.

PARP6, a member of a family of enzymes (17 in humans) known as poly-ADP-ribose polymerases (PARPs), is a neuronally enriched PARP. While previous studies from our group show that Parp6 is a regulator of dendrite morphogenesis in rat hippocampal neurons, its function in the nervous system in vivo is poorly understood. Here, we describe the generation of a loss-of-function mouse model for examining the function of Parp6 during neurodevelopment in vivo. Using CRISPR-Cas9 mutagenesis, we generated a mouse line that expressed a Parp6 truncated variant (Parp6) in place of Parp6. Unlike Parp6, Parp6 is devoid of catalytic activity. Homozygous Parp6 do not exhibit obvious neuromorphological defects during development, but nevertheless die perinatally. This suggests that Parp6 catalytic activity is important for postnatal survival. We also report PARP6 mutations in six patients with several neurodevelopmental disorders, including microencephaly, intellectual disabilities, and epilepsy. The most severe mutation in (C563R) results in the loss of catalytic activity. Expression of Parp6 in hippocampal neurons decreases dendrite morphogenesis. To gain further insight into function in neurons we also performed a BioID proximity labeling experiment in hippocampal neurons and identified several microtubule-binding proteins (e.g., MAP-2) using proteomics. Taken together, our results suggest that PARP6 is an essential microtubule-regulatory gene in mice, and that the loss of PARP6 catalytic activity has detrimental effects on neuronal function in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells10061289DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224619PMC
May 2021

Biallelic and monoallelic variants in PLXNA1 are implicated in a novel neurodevelopmental disorder with variable cerebral and eye anomalies.

Genet Med 2021 May 30. Epub 2021 May 30.

Department of Medical Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada.

Purpose: To investigate the effect of PLXNA1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and to functionally characterize the zebrafish homologs plxna1a and plxna1b during development.

Methods: We assembled ten patients from seven families with biallelic or de novo PLXNA1 variants. We describe genotype-phenotype correlations, investigated the variants by structural modeling, and used Morpholino knockdown experiments in zebrafish to characterize the embryonic role of plxna1a and plxna1b.

Results: Shared phenotypic features among patients include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Notably, seizures were predominantly reported in patients with monoallelic variants. Structural modeling of missense variants in PLXNA1 suggests distortion in the native protein. Our zebrafish studies enforce an embryonic role of plxna1a and plxna1b in the development of the central nervous system and the eye.

Conclusion: We propose that different biallelic and monoallelic variants in PLXNA1 result in a novel neurodevelopmental syndrome mainly comprising developmental delay, brain, and eye anomalies. We hypothesize that biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01196-9DOI Listing
May 2021

Syndromic neurodevelopmental disorder associated with de novo variants in DDX23.

Am J Med Genet A 2021 10 29;185(10):2863-2872. Epub 2021 May 29.

Greenwood Genetic Center, Greenwood, South Carolina, USA.

The DEAD/DEAH box RNA helicases are a superfamily of proteins involved in the processing and transportation of RNA within the cell. A growing literature supports this family of proteins as contributing to various types of human disorders from neurodevelopmental disorders to syndromes with multiple congenital anomalies. This article presents a cohort of nine unrelated individuals with de novo missense alterations in DDX23 (Dead-Box Helicase 23). The gene is ubiquitously expressed and functions in RNA splicing, maintenance of genome stability, and the sensing of double-stranded RNA. Our cohort of patients, gathered through GeneMatcher, exhibited features including tone abnormalities, global developmental delay, facial dysmorphism, autism spectrum disorder, and seizures. Additionally, there were a variety of other findings in the skeletal, renal, ocular, and cardiac systems. The missense alterations all occurred within a highly conserved RecA-like domain of the protein, and are located within or proximal to the DEAD box sequence. The individuals presented in this article provide evidence of a syndrome related to alterations in DDX23 characterized predominantly by atypical neurodevelopment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62359DOI Listing
October 2021

Recurrence of an early postzygotic rescue of an inherited unbalanced translocation resulting in mosaic segmental uniparental isodisomy of chromosome 11q in siblings.

Am J Med Genet A 2021 10 27;185(10):3057-3061. Epub 2021 May 27.

Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU G4 Génomique, F-76000, Rouen, France.

Balanced translocations are associated with a risk of transmission of unbalanced chromosomal rearrangements in the offspring. Such inherited chromosomal abnormalities are typically non-mosaic as they are present in the germline. We report the recurrence in two siblings of a mosaicism for a chromosomal rearrangement inherited from their asymptomatic father who carried a balanced t(2;11)(q35;q25) translocation. Both siblings exhibited a similar phenotype including intellectual disability, dysmorphic features, kyphoscoliosis, and cervical spinal stenosis. Karyotyping, fluorescence in situ hybridization and SNP array analysis of blood lymphocytes of both siblings identified two cell lines: one carrying a 2q35q37.3 duplication and a 11q25qter deletion (~90% cells), and one carrying an 11q uniparental isodisomy of maternal origin (~10% cells). We hypothesize that these mosaics were related to a postzygotic rescue mechanism which unexpectedly recurred in both siblings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62361DOI Listing
October 2021

CSNK2B: A broad spectrum of neurodevelopmental disability and epilepsy severity.

Epilepsia 2021 Jul 26;62(7):e103-e109. Epub 2021 May 26.

Department of Neuropediatrics, APHP Sorbonne University, Trousseau Hospital, Paris, France.

CSNK2B has recently been implicated as a disease gene for neurodevelopmental disability (NDD) and epilepsy. Information about developmental outcomes has been limited by the young age and short follow-up for many of the previously reported cases, and further delineation of the spectrum of associated phenotypes is needed. We present 25 new patients with variants in CSNK2B and refine the associated NDD and epilepsy phenotypes. CSNK2B variants were identified by research or clinical exome sequencing, and investigators from different centers were connected via GeneMatcher. Most individuals had developmental delay and generalized epilepsy with onset in the first 2 years. However, we found a broad spectrum of phenotypic severity, ranging from early normal development with pharmacoresponsive seizures to profound intellectual disability with intractable epilepsy and recurrent refractory status epilepticus. These findings suggest that CSNK2B should be considered in the diagnostic evaluation of patients with a broad range of NDD with treatable or intractable seizures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/epi.16931DOI Listing
July 2021

Genotype-phenotype correlations and novel molecular insights into the DHX30-associated neurodevelopmental disorders.

Genome Med 2021 May 21;13(1):90. Epub 2021 May 21.

Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.

Background: We aimed to define the clinical and variant spectrum and to provide novel molecular insights into the DHX30-associated neurodevelopmental disorder.

Methods: Clinical and genetic data from affected individuals were collected through Facebook-based family support group, GeneMatcher, and our network of collaborators. We investigated the impact of novel missense variants with respect to ATPase and helicase activity, stress granule (SG) formation, global translation, and their effect on embryonic development in zebrafish. SG formation was additionally analyzed in CRISPR/Cas9-mediated DHX30-deficient HEK293T and zebrafish models, along with in vivo behavioral assays.

Results: We identified 25 previously unreported individuals, ten of whom carry novel variants, two of which are recurrent, and provide evidence of gonadal mosaicism in one family. All 19 individuals harboring heterozygous missense variants within helicase core motifs (HCMs) have global developmental delay, intellectual disability, severe speech impairment, and gait abnormalities. These variants impair the ATPase and helicase activity of DHX30, trigger SG formation, interfere with global translation, and cause developmental defects in a zebrafish model. Notably, 4 individuals harboring heterozygous variants resulting either in haploinsufficiency or truncated proteins presented with a milder clinical course, similar to an individual harboring a de novo mosaic HCM missense variant. Functionally, we established DHX30 as an ATP-dependent RNA helicase and as an evolutionary conserved factor in SG assembly. Based on the clinical course, the variant location, and type we establish two distinct clinical subtypes. DHX30 loss-of-function variants cause a milder phenotype whereas a severe phenotype is caused by HCM missense variants that, in addition to the loss of ATPase and helicase activity, lead to a detrimental gain-of-function with respect to SG formation. Behavioral characterization of dhx30-deficient zebrafish revealed altered sleep-wake activity and social interaction, partially resembling the human phenotype.

Conclusions: Our study highlights the usefulness of social media to define novel Mendelian disorders and exemplifies how functional analyses accompanied by clinical and genetic findings can define clinically distinct subtypes for ultra-rare disorders. Such approaches require close interdisciplinary collaboration between families/legal representatives of the affected individuals, clinicians, molecular genetics diagnostic laboratories, and research laboratories.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13073-021-00900-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8140440PMC
May 2021

De novo variants in TCF7L2 are associated with a syndromic neurodevelopmental disorder.

Am J Med Genet A 2021 08 18;185(8):2384-2390. Epub 2021 May 18.

Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

TCF7L2 encodes transcription factor 7-like 2 (OMIM 602228), a key mediator of the evolutionary conserved canonical Wnt signaling pathway. Although several large-scale sequencing studies have implicated TCF7L2 in intellectual disability and autism, both the genetic mechanism and clinical phenotype have remained incompletely characterized. We present here a comprehensive genetic and phenotypic description of 11 individuals who have been identified to carry de novo variants in TCF7L2, both truncating and missense. Missense variation is clustered in or near a high mobility group box domain, involving this region in these variants' pathogenicity. All affected individuals present with developmental delays in childhood, but most ultimately achieved normal intelligence or had only mild intellectual disability. Myopia was present in approximately half of the individuals, and some individuals also possessed dysmorphic craniofacial features, orthopedic abnormalities, or neuropsychiatric comorbidities including autism and attention-deficit/hyperactivity disorder (ADHD). We thus present an initial clinical and genotypic spectrum associated with variation in TCF7L2, which will be important in informing both medical management and future research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62254DOI Listing
August 2021

Elp2 mutations perturb the epitranscriptome and lead to a complex neurodevelopmental phenotype.

Nat Commun 2021 05 11;12(1):2678. Epub 2021 May 11.

Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.

Intellectual disability (ID) and autism spectrum disorder (ASD) are the most common neurodevelopmental disorders and are characterized by substantial impairment in intellectual and adaptive functioning, with their genetic and molecular basis remaining largely unknown. Here, we identify biallelic variants in the gene encoding one of the Elongator complex subunits, ELP2, in patients with ID and ASD. Modelling the variants in mice recapitulates the patient features, with brain imaging and tractography analysis revealing microcephaly, loss of white matter tract integrity and an aberrant functional connectome. We show that the Elp2 mutations negatively impact the activity of the complex and its function in translation via tRNA modification. Further, we elucidate that the mutations perturb protein homeostasis leading to impaired neurogenesis, myelin loss and neurodegeneration. Collectively, our data demonstrate an unexpected role for tRNA modification in the pathogenesis of monogenic ID and ASD and define Elp2 as a key regulator of brain development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-22888-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113450PMC
May 2021

Variants in the degron of AFF3 are associated with intellectual disability, mesomelic dysplasia, horseshoe kidney, and epileptic encephalopathy.

Am J Hum Genet 2021 05;108(5):857-873

GeneDx, Gaithersburg, MD 20877, USA.

The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.04.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206167PMC
May 2021

Heterozygous ANKRD17 loss-of-function variants cause a syndrome with intellectual disability, speech delay, and dysmorphism.

Am J Hum Genet 2021 06 27;108(6):1138-1150. Epub 2021 Apr 27.

Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.

ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.04.007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206162PMC
June 2021

Rare deleterious mutations of HNRNP genes result in shared neurodevelopmental disorders.

Genome Med 2021 04 19;13(1):63. Epub 2021 Apr 19.

The Atwal Clinic: Genomic & Personalized Medicine, Jacksonville, FL, USA.

Background: With the increasing number of genomic sequencing studies, hundreds of genes have been implicated in neurodevelopmental disorders (NDDs). The rate of gene discovery far outpaces our understanding of genotype-phenotype correlations, with clinical characterization remaining a bottleneck for understanding NDDs. Most disease-associated Mendelian genes are members of gene families, and we hypothesize that those with related molecular function share clinical presentations.

Methods: We tested our hypothesis by considering gene families that have multiple members with an enrichment of de novo variants among NDDs, as determined by previous meta-analyses. One of these gene families is the heterogeneous nuclear ribonucleoproteins (hnRNPs), which has 33 members, five of which have been recently identified as NDD genes (HNRNPK, HNRNPU, HNRNPH1, HNRNPH2, and HNRNPR) and two of which have significant enrichment in our previous meta-analysis of probands with NDDs (HNRNPU and SYNCRIP). Utilizing protein homology, mutation analyses, gene expression analyses, and phenotypic characterization, we provide evidence for variation in 12 HNRNP genes as candidates for NDDs. Seven are potentially novel while the remaining genes in the family likely do not significantly contribute to NDD risk.

Results: We report 119 new NDD cases (64 de novo variants) through sequencing and international collaborations and combined with published clinical case reports. We consider 235 cases with gene-disruptive single-nucleotide variants or indels and 15 cases with small copy number variants. Three hnRNP-encoding genes reach nominal or exome-wide significance for de novo variant enrichment, while nine are candidates for pathogenic mutations. Comparison of HNRNP gene expression shows a pattern consistent with a role in cerebral cortical development with enriched expression among radial glial progenitors. Clinical assessment of probands (n = 188-221) expands the phenotypes associated with HNRNP rare variants, and phenotypes associated with variation in the HNRNP genes distinguishes them as a subgroup of NDDs.

Conclusions: Overall, our novel approach of exploiting gene families in NDDs identifies new HNRNP-related disorders, expands the phenotypes of known HNRNP-related disorders, strongly implicates disruption of the hnRNPs as a whole in NDDs, and supports that NDD subtypes likely have shared molecular pathogenesis. To date, this is the first study to identify novel genetic disorders based on the presence of disorders in related genes. We also perform the first phenotypic analyses focusing on related genes. Finally, we show that radial glial expression of these genes is likely critical during neurodevelopment. This is important for diagnostics, as well as developing strategies to best study these genes for the development of therapeutics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13073-021-00870-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8056596PMC
April 2021

Rare deleterious de novo missense variants in Rnf2/Ring2 are associated with a neurodevelopmental disorder with unique clinical features.

Hum Mol Genet 2021 Jun;30(14):1283-1292

Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA.

The Polycomb group (PcG) gene RNF2 (RING2) encodes a catalytic subunit of the Polycomb repressive complex 1 (PRC1), an evolutionarily conserved machinery that post-translationally modifies chromatin to maintain epigenetic transcriptional repressive states of target genes including Hox genes. Here, we describe two individuals, each with rare de novo missense variants in RNF2. Their phenotypes include intrauterine growth retardation, severe intellectual disabilities, behavioral problems, seizures, feeding difficulties and dysmorphic features. Population genomics data suggest that RNF2 is highly constrained for loss-of-function (LoF) and missense variants, and both p.R70H and p.S82R variants have not been reported to date. Structural analyses of the two alleles indicate that these changes likely impact the interaction between RNF2 and BMI1, another PRC1 subunit or its substrate Histone H2A, respectively. Finally, we provide functional data in Drosophila that these two missense variants behave as LoF alleles in vivo. The evidence provide support for deleterious alleles in RNF2 being associated with a new and recognizable genetic disorder. This tentative gene-disease association in addition to the 12 previously identified disorders caused by PcG genes attests to the importance of these chromatin regulators in Mendelian disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab110DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255132PMC
June 2021

Haploinsufficiency of PRR12 causes a spectrum of neurodevelopmental, eye, and multisystem abnormalities.

Genet Med 2021 07 6;23(7):1234-1245. Epub 2021 Apr 6.

Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.

Purpose: Proline Rich 12 (PRR12) is a gene of unknown function with suspected DNA-binding activity, expressed in developing mice and human brains. Predicted loss-of-function variants in this gene are extremely rare, indicating high intolerance of haploinsufficiency.

Methods: Three individuals with intellectual disability and iris anomalies and truncating de novo PRR12 variants were described previously. We add 21 individuals with similar PRR12 variants identified via matchmaking platforms, bringing the total number to 24.

Results: We observed 12 frameshift, 6 nonsense, 1 splice-site, and 2 missense variants and one patient with a gross deletion involving PRR12. Three individuals had additional genetic findings, possibly confounding the phenotype. All patients had developmental impairment. Variable structural eye defects were observed in 12/24 individuals (50%) including anophthalmia, microphthalmia, colobomas, optic nerve and iris abnormalities. Additional common features included hypotonia (61%), heart defects (52%), growth failure (54%), and kidney anomalies (35%). PrediXcan analysis showed that phecodes most strongly associated with reduced predicted PRR12 expression were enriched for eye- (7/30) and kidney- (4/30) phenotypes, such as wet macular degeneration and chronic kidney disease.

Conclusion: These findings support PRR12 haploinsufficiency as a cause for a novel disorder with a wide clinical spectrum marked chiefly by neurodevelopmental and eye abnormalities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01129-6DOI Listing
July 2021

Patients with -related intellectual disability without distinctive features of Zimmermann-Laband/Temple-Baraitser syndrome.

J Med Genet 2021 Apr 2. Epub 2021 Apr 2.

APHP.Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié Salpêtrière et Hôpital Trousseau, Paris, Île-de-France, France.

De novo missense variants in encoding Kv10.1 are responsible for two clinically recognisable phenotypes: Temple-Baraitser syndrome (TBS) and Zimmermann-Laband syndrome (ZLS). The clinical overlap between these two syndromes suggests that they belong to a spectrum of -related encephalopathies. Affected patients have severe intellectual disability (ID) with or without epilepsy, hypertrichosis and distinctive features such as gingival hyperplasia and nail hypoplasia/aplasia (present in 20/23 reported cases).We report a series of seven patients with ID and de novo pathogenic variants identified by whole-exome sequencing or an epilepsy gene panel in whom the diagnosis of TBS/ZLS had not been first considered. Four of these variants, p.(Thr294Met), p.(Ala492Asp), p.(Thr493Asn) and p.(Gly496Arg), were located in the transmembrane domains S3 and S6 of Kv10.1 and one, p.(Arg693Gln), in its C-terminal cyclic nucleotide-binding homology domain (CNBHD). Clinical reappraisal by the referring clinical geneticists confirmed the absence of the distinctive gingival and nail features of TBS/ZLS.Our study expands the phenotypical spectrum of -related encephalopathies to individuals with an attenuated extraneurological phenotype preventing a clinical diagnosis of TBS or ZLS. This subtype may be related to recurrent substitutions of the Gly496, suggesting a genotype-phenotype correlation and, possibly, to variants in the CNBHD domain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2020-107511DOI Listing
April 2021

Hunting for the genetic basis of Susac syndrome.

Eur J Neurol 2021 07 7;28(7):e57-e59. Epub 2021 Apr 7.

Département de Médecine Interne, Assistance Publique Hôpitaux de Paris, Hôpital Bichat, Université de Paris, Paris, France.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ene.14836DOI Listing
July 2021

Pathogenic variants in KCNQ2 cause intellectual deficiency without epilepsy: Broadening the phenotypic spectrum of a potassium channelopathy.

Am J Med Genet A 2021 06 23;185(6):1803-1815. Epub 2021 Mar 23.

Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d'Alsace, Strasbourg, France.

High-throughput sequencing (HTS) improved the molecular diagnosis in individuals with intellectual deficiency (ID) and helped to broaden the phenotype of previously known disease-causing genes. We report herein four unrelated patients with isolated ID, carriers of a likely pathogenic variant in KCNQ2, a gene usually implicated in benign familial neonatal seizures (BFNS) or early onset epileptic encephalopathy (EOEE). Patients were diagnosed by targeted HTS or exome sequencing. Pathogenicity of the variants was assessed by multiple in silico tools. Patients' ID ranged from mild to severe with predominance of speech disturbance and autistic features. Three of the four variants disrupted the same amino acid. Compiling all the pathogenic variants previously reported, we observed a strong overlap between variants causing EOEE, isolated ID, and BFNS and an important intra-familial phenotypic variability, although missense variants in the voltage-sensing domain and the pore are significantly associated to EOEE (p < 0.01, Fisher test). Thus, pathogenic variants in KCNQ2 can be associated with isolated ID. We did not highlight strong related genotype-phenotype correlations in KCNQ2-related disorders. A second genetic hit, a burden of rare variants, or other extrinsic factors may explain such a phenotypic variability. However, it is of interest to study encephalopathy genes in non-epileptic ID patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62181DOI Listing
June 2021

Monoallelic and bi-allelic variants in NCDN cause neurodevelopmental delay, intellectual disability, and epilepsy.

Am J Hum Genet 2021 04 11;108(4):739-748. Epub 2021 Mar 11.

Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Box 815, 751 08 Uppsala, Sweden. Electronic address:

Neurochondrin (NCDN) is a cytoplasmatic neural protein of importance for neural growth, glutamate receptor (mGluR) signaling, and synaptic plasticity. Conditional loss of Ncdn in mice neural tissue causes depressive-like behaviors, impaired spatial learning, and epileptic seizures. We report on NCDN missense variants in six affected individuals with variable degrees of developmental delay, intellectual disability (ID), and seizures. Three siblings were found homozygous for a NCDN missense variant, whereas another three unrelated individuals carried different de novo missense variants in NCDN. We assayed the missense variants for their capability to rescue impaired neurite formation in human neuroblastoma (SH-SY5Y) cells depleted of NCDN. Overexpression of wild-type NCDN rescued the neurite-phenotype in contrast to expression of NCDN containing the variants of affected individuals. Two missense variants, associated with severe neurodevelopmental features and epilepsy, were unable to restore mGluR5-induced ERK phosphorylation. Electrophysiological analysis of SH-SY5Y cells depleted of NCDN exhibited altered membrane potential and impaired action potentials at repolarization, suggesting NCDN to be required for normal biophysical properties. Using available transcriptome data from human fetal cortex, we show that NCDN is highly expressed in maturing excitatory neurons. In combination, our data provide evidence that bi-allelic and de novo variants in NCDN cause a clinically variable form of neurodevelopmental delay and epilepsy, highlighting a critical role for NCDN in human brain development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.02.015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059333PMC
April 2021
-->