Publications by authors named "Bodvaël Fraysse"

23 Publications

  • Page 1 of 1

Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy.

Nat Commun 2017 07 25;8:16105. Epub 2017 Jul 25.

Institut de Myologie, Neuromuscular Physiology and Evaluation Laboratory, 47 bd de l'Hôpital, 75013 Paris, France.

Duchenne muscular dystrophy (DMD) is an incurable X-linked muscle-wasting disease caused by mutations in the dystrophin gene. Gene therapy using highly functional microdystrophin genes and recombinant adeno-associated virus (rAAV) vectors is an attractive strategy to treat DMD. Here we show that locoregional and systemic delivery of a rAAV2/8 vector expressing a canine microdystrophin (cMD1) is effective in restoring dystrophin expression and stabilizing clinical symptoms in studies performed on a total of 12 treated golden retriever muscular dystrophy (GRMD) dogs. Locoregional delivery induces high levels of microdystrophin expression in limb musculature and significant amelioration of histological and functional parameters. Systemic intravenous administration without immunosuppression results in significant and sustained levels of microdystrophin in skeletal muscles and reduces dystrophic symptoms for over 2 years. No toxicity or adverse immune consequences of vector administration are observed. These studies indicate safety and efficacy of systemic rAAV-cMD1 delivery in a large animal model of DMD, and pave the way towards clinical trials of rAAV-microdystrophin gene therapy in DMD patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms16105DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537486PMC
July 2017

Gait characterization in golden retriever muscular dystrophy dogs using linear discriminant analysis.

BMC Musculoskelet Disord 2017 04 12;18(1):153. Epub 2017 Apr 12.

Neuromuscular Physiology and Evaluation Lab, Institute of Myology, Paris, France.

Background: Accelerometric analysis of gait abnormalities in golden retriever muscular dystrophy (GRMD) dogs is of limited sensitivity, and produces highly complex data. The use of discriminant analysis may enable simpler and more sensitive evaluation of treatment benefits in this important preclinical model.

Methods: Accelerometry was performed twice monthly between the ages of 2 and 12 months on 8 healthy and 20 GRMD dogs. Seven accelerometric parameters were analysed using linear discriminant analysis (LDA). Manipulation of the dependent and independent variables produced three distinct models. The ability of each model to detect gait alterations and their pattern change with age was tested using a leave-one-out cross-validation approach.

Results: Selecting genotype (healthy or GRMD) as the dependent variable resulted in a model (Model 1) allowing a good discrimination between the gait phenotype of GRMD and healthy dogs. However, this model was not sufficiently representative of the disease progression. In Model 2, age in months was added as a supplementary dependent variable (GRMD_2 to GRMD_12 and Healthy_2 to Healthy_9.5), resulting in a high overall misclassification rate (83.2%). To improve accuracy, a third model (Model 3) was created in which age was also included as an explanatory variable. This resulted in an overall misclassification rate lower than 12%. Model 3 was evaluated using blinded data pertaining to 81 healthy and GRMD dogs. In all but one case, the model correctly matched gait phenotype to the actual genotype. Finally, we used Model 3 to reanalyse data from a previous study regarding the effects of immunosuppressive treatments on muscular dystrophy in GRMD dogs. Our model identified significant effect of immunosuppressive treatments on gait quality, corroborating the original findings, with the added advantages of direct statistical analysis with greater sensitivity and more comprehensible data representation.

Conclusions: Gait analysis using LDA allows for improved analysis of accelerometry data by applying a decision-making analysis approach to the evaluation of preclinical treatment benefits in GRMD dogs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12891-017-1494-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388997PMC
April 2017

Calcium homeostasis alterations in a mouse model of the Dynamin 2-related centronuclear myopathy.

Biol Open 2016 Nov 15;5(11):1691-1696. Epub 2016 Nov 15.

Research Center for Myology, UPMC Univ Paris 06 and INSERM UMR_S974, CNRS FRE 3617, Institute of Myology, Paris 75013, France

Autosomal dominant centronuclear myopathy (CNM) is a rare congenital myopathy characterized by centrally located nuclei in muscle fibers. CNM results from mutations in the gene encoding dynamin 2 (DNM2), a large GTPase involved in endocytosis, intracellular membrane trafficking, and cytoskeleton regulation. We developed a knock-in mouse model expressing the most frequent DNM2-CNM mutation; i.e. the KI-Dnm2 model. Heterozygous (HTZ) KI-Dnm2 mice progressively develop muscle atrophy, impairment of contractile properties, histopathological abnormalities, and elevated cytosolic calcium concentration. Here, we aim at better characterizing the calcium homeostasis impairment in extensor digitorum longus (EDL) and soleus muscles from adult HTZ KI-Dnm2 mice. We demonstrate abnormal contractile properties and cytosolic Ca concentration in EDL but not soleus muscles showing that calcium impairment is correlated with muscle weakness and might be a determinant factor of the spatial muscle involvement. In addition, the elevated cytosolic Ca concentration in EDL muscles is associated with an increased sarcolemmal permeability to Ca and releasable Ca content from the sarcoplasmic reticulum. However, amplitude and kinetics characteristics of the calcium transient appear unchanged. This suggests that calcium defect is probably not a primary cause of decreased force generation by compromised sarcomere shortening but may be involved in long-term deleterious consequences on muscle physiology. Our results highlight the first pathomechanism which may explain the spatial muscle involvement occurring in DNM2-related CNM and open the way toward development of a therapeutic approach to normalize calcium content.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/bio.020263DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5155535PMC
November 2016

Dystrophin restoration therapy improves both the reduced excitability and the force drop induced by lengthening contractions in dystrophic mdx skeletal muscle.

Skelet Muscle 2016 20;6:23. Epub 2016 Jul 20.

Groupe Hospitalier Pitié Salpêtrière, Centre de Recherche en Myologie, CNRS, Inserm, UPMC Univ Paris 06, Sorbonne Universités, Paris, F-75013 France ; Sorbonne Paris Cité, Université Paris Descartes, Paris, F-75006 France ; Groupe Hospitalier Pitié-Salpétrière, Institut de Myologie, F-75013 Paris, France.

Background: The greater susceptibility to contraction-induced skeletal muscle injury (fragility) is an important dystrophic feature and tool for testing preclinic dystrophin-based therapies for Duchenne muscular dystrophy. However, how these therapies reduce the muscle fragility is not clear.

Methods: To address this question, we first determined the event(s) of the excitation-contraction cycle which is/are altered following lengthening (eccentric) contractions in the mdx muscle.

Results: We found that the immediate force drop following lengthening contractions, a widely used measure of muscle fragility, was associated with reduced muscle excitability. Moreover, the force drop can be mimicked by an experimental reduction in muscle excitation of uninjured muscle. Furthermore, the force drop was not related to major neuromuscular transmission failure, excitation-contraction uncoupling, and myofibrillar impairment. Secondly, and importantly, the re-expression of functional truncated dystrophin in the muscle of mdx mice using an exon skipping strategy partially prevented the reductions in both force drop and muscle excitability following lengthening contractions.

Conclusion: We demonstrated for the first time that (i) the increased susceptibility to contraction-induced muscle injury in mdx mice is mainly attributable to reduced muscle excitability; (ii) dystrophin-based therapy improves fragility of the dystrophic skeletal muscle by preventing reduction in muscle excitability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13395-016-0096-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4952281PMC
October 2016

Mechanical Overloading Increases Maximal Force and Reduces Fragility in Hind Limb Skeletal Muscle from Mdx Mouse.

Am J Pathol 2015 Jul 23;185(7):2012-24. Epub 2015 May 23.

Biological Adaptation and Aging, Institut de Biologie Paris-Seine, Centre National de la Recherche Scientifique UMR 8256, Université Pierre et Marie Curie-Paris 6, Sorbonne Universités, Paris, France.

There is fear that mechanical overloading (OVL; ie, high-force contractions) accelerates Duchenne muscular dystrophy. Herein, we determined whether short-term OVL combined with wheel running, short-term OVL combined with irradiation, and long-term OVL are detrimental for hind limb mdx mouse muscle, a murine model of Duchene muscular dystrophy exhibiting milder dystrophic features. OVL was induced by the surgical ablation of the synergic muscles of the plantaris muscle, a fast muscle susceptible to contraction-induced muscle damage in mdx mice. We found that short-term OVL combined with wheel and long-term OVL did not worsen the deficit in specific maximal force (ie, absolute maximal force normalized to muscle size) and histological markers of muscle damage (percentage of regenerating fibers and fibrosis) in mdx mice. Moreover, long-term OVL did not increase the alteration in calcium homeostasis and did not deplete muscle cell progenitors expressing Pax 7 in mdx mice. Irradiation before short-term OVL, which is believed to inhibit muscle regeneration, was not more detrimental to mdx than control mice. Interestingly, short-term OVL combined with wheel and long-term OVL markedly improved the susceptibility to contraction-induced damage, increased absolute maximal force, induced hypertrophy, and promoted a slower, more oxidative phenotype. Together, these findings indicate that OVL is beneficial to mdx muscle, and muscle regeneration does not mask the potentially detrimental effect of OVL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajpath.2015.03.027DOI Listing
July 2015

Calcium homeostasis is altered in skeletal muscle of spontaneously hypertensive rats: cytofluorimetric and gene expression analysis.

Am J Pathol 2014 Oct 30;184(10):2803-15. Epub 2014 Jul 30.

Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy.

Hypertension is often associated with skeletal muscle pathological conditions related to function and metabolism. The mechanisms underlying the development of these pathological conditions remain undefined. Because calcium homeostasis is a biomarker of muscle function, we assessed whether it is altered in hypertensive muscles. We measured resting intracellular calcium and store-operated calcium entry (SOCE) in fast- and slow-twitch muscle fibers from normotensive Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs) by cytofluorimetric technique and determined the expression of SOCE gene machinery by real-time PCR. Hypertension caused a phenotype-dependent dysregulation of calcium homeostasis; the resting intracellular calcium of extensor digitorum longus and soleus muscles of SHRs were differently altered with respect to the related muscle of normotensive animals. In addition, soleus muscles of SHR showed reduced activity of the sarcoplasmic reticulum and decreased sarcolemmal calcium permeability at rest and after SOCE activation. Accordingly, we found an alteration of the expression levels of some SOCE components, such as stromal interaction molecule 1, calcium release-activated calcium modulator 1, and transient receptor potential canonical 1. The hypertension-induced alterations of calcium homeostasis in the soleus muscle of SHRs occurred with changes of some functional outcomes as excitability and resting chloride conductance. We provide suitable targets for therapeutic interventions aimed at counterbalancing muscle performance decline in hypertension, and propose the reported calcium-dependent parameters as indexes to predict how the antihypertensive drugs could influence muscle function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajpath.2014.06.020DOI Listing
October 2014

Acute effect of androgens on maximal force-generating capacity and electrically evoked calcium transient in mouse skeletal muscles.

Steroids 2014 Sep 17;87:6-11. Epub 2014 May 17.

Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR 974S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France. Electronic address:

As androgens might have rapid androgen-receptor (AR) independent action on muscle cells, we analysed the in vivo acute effect of androgens on maximal force generation capacity and electrically evoked calcium transient responsible for the excitation-contraction coupling in skeletal muscle from wild-type male mice and muscle fibre androgen receptor (AR) deficient (AR(skm-/y)) male mice. We tested the hypothesis that acute in vivo androgen treatment improves contractility and modifies calcium transient in mouse hindlimb muscles. In addition, we determined whether the reduced maximal force generation capacity of AR(skm-/y) mice is caused by an alteration in calcium transient. We found that acute dehydrotestosterone (DHT) and testosterone treatment of mice does not change in situ maximal force, power or fatigue resistance of tibialis anterior muscles. In agreement with this observation, maximal force and twitch kinetics also remained unchanged when both whole extensor digitorum longus (EDL) muscle or fibre bundles were incubated in vitro with DHT. Electrically evoked calcium transient, i.e. calcium amplitude, time to peak and decay, was also not modified by DHT treatment of EDL muscle fibre bundles. Finally, we found no difference in calcium transient between AR(skm-/y) and wild-type mice despite the reduced maximal force in EDL fibre bundles of AR(skm-/y) mice. In conclusion, acute androgen treatment has no ergogenic effect on muscle contractility and does not affect calcium transient in response to stimulation. In addition, the reduced maximal force of AR(skm-/y) mice is not related to calcium transient dysfunction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.steroids.2014.05.005DOI Listing
September 2014

Growth hormone secretagogues exert differential effects on skeletal muscle calcium homeostasis in male rats depending on the peptidyl/nonpeptidyl structure.

Endocrinology 2013 Oct 8;154(10):3764-75. Epub 2013 Jul 8.

Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Via Orabona, 4, Campus, I-70125 Bari, Italy.

The orexigenic and anabolic effects induced by ghrelin and the synthetic GH secretagogues (GHSs) are thought to positively contribute to therapeutic approaches and the adjunct treatment of a number of diseases associated with muscle wasting such as cachexia and sarcopenia. However, many questions about the potential utility and safety of GHSs in both therapy and skeletal muscle function remain unanswered. By using fura-2 cytofluorimetric technique, we determined the acute effects of ghrelin, as well as of peptidyl and nonpeptidyl synthetic GHSs on calcium homeostasis, a critical biomarker of muscle function, in isolated tendon-to-tendon male rat skeletal muscle fibers. The synthetic nonpeptidyl GHSs, but not peptidyl ghrelin and hexarelin, were able to significantly increase resting cytosolic calcium [Ca²⁺]i. The nonpeptidyl GHS-induced [Ca²⁺]i increase was independent of GHS-receptor 1a but was antagonized by both thapsigargin/caffeine and cyclosporine A, indicating the involvement of the sarcoplasmic reticulum and mitochondria. Evaluation of the effects of a pseudopeptidyl GHS and a nonpeptidyl antagonist of the GHS-receptor 1a together with a drug-modeling study suggest the conclusion that the lipophilic nonpeptidyl structure of the tested compounds is the key chemical feature crucial for the GHS-induced calcium alterations in the skeletal muscle. Thus, synthetic GHSs can have different effects on skeletal muscle fibers depending on their molecular structures. The calcium homeostasis dysregulation specifically induced by the nonpeptidyl GHSs used in this study could potentially counteract the beneficial effects associated with these drugs in the treatment of muscle wasting of cachexia- or other age-related disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2013-1334DOI Listing
October 2013

Assessment of a symptomatic Duchenne muscular dystrophy carrier 20 years after myoblast transplantation from her asymptomatic identical twin sister.

Neuromuscul Disord 2013 Jul 31;23(7):575-9. Epub 2013 May 31.

Institut de Myologie, GH Pitié-Salpêtrière, Paris, France.

Because it is due to a mutation on the X-chromosome, Duchenne muscular dystrophy rarely affects women, unless there is an unequal lyonisation of the X-chromosome containing the normal dystrophin gene. We report here the unique situation of a symptomatic Duchenne muscular dystrophy woman who was transplanted with myoblasts received from her asymptomatic monozygotic twin sister 20 years ago. Specific dynamometry was performed to possibly detect a long-term effect of this cell therapy. Long-term safety of myoblast transplantation was established by this exceptional case. However, long-term efficacy could not be definitively asserted for this patient, in spite of several clues suggesting beneficial effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nmd.2013.04.007DOI Listing
July 2013

Increased myofilament Ca2+ sensitivity and diastolic dysfunction as early consequences of Mybpc3 mutation in heterozygous knock-in mice.

J Mol Cell Cardiol 2012 Jun 23;52(6):1299-307. Epub 2012 Mar 23.

INSERM U974, Institut de Myologie, Paris, France.

Hypertrophic cardiomyopathy (HCM) is frequently caused by mutations in MYBPC3 encoding cardiac myosin-binding protein C (cMyBP-C). The mechanisms leading from gene mutations to the HCM phenotype remain incompletely understood, partially because current mouse models of HCM do not faithfully reflect the human situation and early hypertrophy confounds the interpretation of functional alterations. The goal of this study was to evaluate whether myofilament Ca(2+) sensitization and diastolic dysfunction are associated or precede the development of left ventricular hypertrophy (LVH) in HCM. We evaluated the function of skinned and intact cardiac myocytes, as well as the intact heart in a recently developed Mybpc3-targeted knock-in mouse model carrying a point mutation frequently associated with HCM. Compared to wild-type, 10-week old homozygous knock-in mice exhibited i) higher myofilament Ca(2+) sensitivity in skinned ventricular trabeculae, ii) lower diastolic sarcomere length, and faster Ca(2+) transient decay in intact myocytes, and iii) LVH, reduced fractional shortening, lower E/A and E'/A', and higher E/E' ratios by echocardiography and Doppler analysis, suggesting systolic and diastolic dysfunction. In contrast, heterozygous knock-in mice, which mimic the human HCM situation, did not exhibit LVH or systolic dysfunction, but exhibited higher myofilament Ca(2+) sensitivity, faster Ca(2+) transient decay, and diastolic dysfunction. These data demonstrate that myofilament Ca(2+) sensitization and diastolic dysfunction are early phenotypic consequences of Mybpc3 mutations independent of LVH. The accelerated Ca(2+) transients point to compensatory mechanisms directed towards normalization of relaxation. We propose that HCM is a model for diastolic heart failure and this mouse model could be valuable in studying mechanisms and treatment modalities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2012.03.009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370652PMC
June 2012

A centronuclear myopathy--dynamin 2 mutation impairs autophagy in mice.

Traffic 2012 Jun 3;13(6):869-79. Epub 2012 Apr 3.

UM76, Université Pierre et Marie Curie-Paris 6, Paris, F-75013, France.

Dynamin 2 (Dnm2) is involved in endocytosis and intracellular membrane trafficking through its function in vesicle formation from distinct membrane compartments. Heterozygous (HTZ) mutations in the DNM2 gene cause dominant centronuclear myopathy or Charcot-Marie-Tooth neuropathy. We generated a knock-in Dnm2R465W mouse model expressing the most frequent human mutation and recently reported that HTZ mice progressively developed a myopathy. We investigated here the cause of neonatal lethality occurring in homozygous (HMZ) mice. We show that HMZ mice present at birth with a reduced body weight, hypoglycemia, increased liver glycogen content and hepatomegaly, in agreement with a defect in neonatal autophagy. In vitro studies performed in HMZ embryonic fibroblasts point out to a decrease in the autophagy flux prior to degradation at the autolysosome. We show that starved HMZ cells have a higher number of immature autophagy-related structures probably due to a defect of acidification. Our results highlight the role of Dnm2 in the cross talk between endosomal and autophagic pathways and evidence a new role of Dnm2-dependent membrane trafficking in autophagy which may be relevant in DNM2-related human diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0854.2012.01348.xDOI Listing
June 2012

A centronuclear myopathy-dynamin 2 mutation impairs skeletal muscle structure and function in mice.

Hum Mol Genet 2010 Dec 21;19(24):4820-36. Epub 2010 Sep 21.

Université Pierre et Marie Curie-Paris 6, IFR14, Paris F-75013, France.

Autosomal dominant centronuclear myopathy (AD-CNM) is due to mutations in the gene encoding dynamin 2 (DNM2) involved in endocytosis and intracellular membrane trafficking. To understand the pathomechanisms resulting from a DNM2 mutation, we generated a knock-in mouse model expressing the most frequent AD-CNM mutation (KI-Dnm2(R465W)). Heterozygous (HTZ) mice developed a myopathy showing a specific spatial and temporal muscle involvement. In the primarily and prominently affected tibialis anterior muscle, impairment of the contractile properties was evidenced at weaning and was progressively associated with atrophy and histopathological abnormalities mainly affecting mitochondria and reticular network. Expression of genes involved in ubiquitin-proteosome and autophagy pathways was up-regulated during DNM2-induced atrophy. In isolated muscle fibers from wild-type and HTZ mice, Dnm2 localized in regions of intense membrane trafficking (I-band and perinuclear region), emphasizing the pathophysiological hypothesis in which DNM2-dependent trafficking would be altered. In addition, HTZ fibers showed an increased calcium concentration as well as an intracellular Dnm2 and dysferlin accumulation. A similar dysferlin retention, never reported so far in congenital myopathies, was also demonstrated in biopsies from DNM2-CNM patients and can be considered as a new marker to orientate direct genetic testing. Homozygous (HMZ) mice died during the first hours of life. Impairment of clathrin-mediated endocytosis, demonstrated in HMZ embryonic fibroblasts, could be the cause of lethality. Overall, this first mouse model of DNM2-related myopathy shows the crucial role of DNM2 in muscle homeostasis and will be a precious tool to study DNM2 functions in muscle, pathomechanisms of DNM2-CNM and developing therapeutic strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddq413DOI Listing
December 2010

Ca2+ overload and mitochondrial permeability transition pore activation in living delta-sarcoglycan-deficient cardiomyocytes.

Am J Physiol Cell Physiol 2010 Sep 30;299(3):C706-13. Epub 2010 Jun 30.

Institut de Myologie-UPMC, INSERM U974, CNRS, Paris, France.

Muscular dystrophies are often associated with significant cardiac disease that can be the prominent feature associated with gene mutations in sarcoglycan. Cardiac cell death is a main feature of cardiomyopathy in sarcoglycan deficiency and may arise as a cardiomyocyte intrinsic process that remains unclear. Deficiency of delta-sarcoglycan (delta-SG) induces disruption of the dystrophin-associated glycoprotein complex, a known cause of membrane instability that may explain cardiomyocytes cytosolic Ca2+ increase. In this study we assessed the hypothesis that cytosolic Ca2+ increase triggers cardiomyocyte death through mitochondrial Ca2+ overload and dysfunction in the delta-SG-deficient CHF147 hamster. We showed that virtually all isolated CHF147 ventricular myocytes exhibited elevated cytosolic and mitochondrial Ca2+ levels by the use of the Fura-2 and Rhod-2 fluorescent probes. Observation of living cells with Mito-Tracker red lead to the conclusion that approximately 15% of isolated CHF147 cardiomyocytes had disorganized mitochondria. Transmission electron microscope imaging showed mitochondrial swelling associated with crest and membrane disruption. Analysis of the mitochondrial permeability transition pore (MPTP) activity using calcein revealed that mitochondria of CHF147 ventricular cells were twofold leakier than wild types, whereas reactive oxygen species production was unchanged. Bax, Bcl-2, and LC3 expression analysis by Western blot indicated that the intrinsic apoptosis and the cell death associated to autophagy pathways were not significantly activated in CHF147 hearts. Our results lead to conclusion that cardiomyocytes death in delta-SG-deficient animals is an intrinsic phenomenon, likely related to Ca2+-induced necrosis. In this process Ca2+ overload-induced MPTP activation and mitochondrial disorganization may have an important role.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00545.2009DOI Listing
September 2010

Nonsense-mediated mRNA decay and ubiquitin-proteasome system regulate cardiac myosin-binding protein C mutant levels in cardiomyopathic mice.

Circ Res 2009 Jul 9;105(3):239-48. Epub 2009 Jul 9.

Institute of Experimental and Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.

Rationale: Mutations in the MYBPC3 gene encoding cardiac myosin-binding protein (cMyBP)-C are frequent causes of hypertrophic cardiomyopathy, but the mechanisms leading from mutations to disease remain elusive.

Objective: The goal of the present study was therefore to gain insights into the mechanisms controlling the expression of MYBPC3 mutations.

Methods And Results: We developed a cMyBP-C knock-in mouse carrying a point mutation. The level of total cMyBP-C mRNAs was 50% and 80% lower in heterozygotes and homozygotes, respectively. Surprisingly, the single G>A transition on the last nucleotide of exon 6 resulted in 3 different mutant mRNAs: missense (exchange of G for A), nonsense (exon skipping, frameshift, and premature stop codon) and deletion/insertion (as nonsense but with additional partial retention of downstream intron, restoring of the reading frame, and almost full-length protein). Inhibition of nonsense-mediated mRNA decay in cultured cardiac myocytes or in vivo with emetine or cycloheximide increased the level of nonsense mRNAs severalfold but not of the other mRNAs. By using sequential protein fractionation and a new antibody directed against novel amino acids produced by the frameshift, we showed that inhibition of the proteasome with epoxomicin via osmotic minipumps increased the level of (near) full-length mutants but not of truncated proteins. Homozygotes exhibited myocyte and left ventricular hypertrophy, reduced fractional shortening, and interstitial fibrosis; heterozygotes had no major phenotype.

Conclusions: These data reveal (1) an unanticipated complexity of the expression of a single point mutation in the whole animal and (2) the involvement of both nonsense-mediated mRNA decay and the ubiquitin-proteasome system in lowering the level of mutant proteins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.109.201251DOI Listing
July 2009

Oxidative stress in SEPN1-related myopathy: from pathophysiology to treatment.

Ann Neurol 2009 Jun;65(6):677-86

INSERM-Institut National de la Sante et de la Recherche Médicale, U582, Institut de Myologie, Paris, France.

Objective: Mutations of the selenoprotein N gene (SEPN1) cause SEPN1-related myopathy (SEPN1-RM), a novel early-onset muscle disorder formerly divided into four different nosological categories. Selenoprotein N (SelN) is the only selenoprotein involved in a genetic disease; its function being unknown, no treatment is available for this potentially lethal disorder. Our objective was to clarify the role of SelN and the pathophysiology of SEPN1-RM to identify therapeutic targets.

Methods: We established and analyzed an ex vivo model of SelN deficiency using fibroblast and myoblast primary cultures from patients with null SEPN1 mutations. DCFH assay, OxyBlot, Western blot, Fura-2, and cell survival studies were performed to measure intracellular oxidant activity, oxidative stress markers, calcium handling, and response to exogenous treatments.

Results: SelN-depleted cells showed oxidative/nitrosative stress manifested by increased intracellular oxidant activity (reactive oxygen species and nitric oxide) and/or excessive oxidation of proteins, including the contractile proteins actin and myosin heavy chain II in myotubes. SelN-devoid myotubes showed also Ca(2+) homeostasis abnormalities suggesting dysfunction of the redox-sensor Ca(2+) channel ryanodine receptor type 1. Furthermore, absence of SelN was associated with abnormal susceptibility to H(2)O(2)-induced oxidative stress, demonstrated by increased cell death. This cell phenotype was restored by pretreatment with the antioxidant N-acetylcysteine.

Interpretation: SelN plays a key role in redox homeostasis and human cell protection against oxidative stress. Oxidative/nitrosative stress is a primary pathogenic mechanism in SEPN1-RM, which can be effectively targeted ex vivo by antioxidants. These findings pave the way to SEPN1-RM treatment, which would represent a first specific pharmacological treatment for a congenital myopathy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.21644DOI Listing
June 2009

Multiple pathological events in exercised dystrophic mdx mice are targeted by pentoxifylline: outcome of a large array of in vivo and ex vivo tests.

J Appl Physiol (1985) 2009 Apr 8;106(4):1311-24. Epub 2009 Jan 8.

Unit of Pharmacology, Department of Pharmaco-biology, Faculty of Pharmacy, University of Bari, Bari, Italy.

The phosphodiesterases inhibitor pentoxifylline gained attention for Duchenne muscular dystrophy therapy for its claimed anti-inflammatory, antioxidant, and antifibrotic action. A recent finding also showed that pentoxifylline counteracts the abnormal overactivity of a voltage-independent calcium channel in myofibers of dystrophic mdx mice. The possible link between workload, altered calcium homeostasis, and oxidative stress pushed toward a more detailed investigation. Thus a 4- to 8-wk treatment with pentoxifylline (50 mg x kg(-1) x day(-1) ip) was performed in mdx mice, undergoing or not a chronic exercise on treadmill. In vivo, the treatment partially increased forelimb strength and enhanced resistance to treadmill running in exercised animals. Ex vivo, pentoxifylline restored the mechanical threshold, an electrophysiological index of calcium homeostasis, and reduced resting cytosolic calcium in extensor digitorum longus muscle fibers. Mn quenching and patch-clamp technique confirmed that this effect was paralleled by a drug-induced reduction of membrane permeability to calcium. The treatment also significantly enhanced isometric tetanic tension in mdx diaphragm. The plasma levels of creatine kinase and reactive oxygen species were both significantly reduced in treated-exercised animals. Dihydroethidium staining, used as an indicator of reactive oxygen species production, showed that pentoxifylline significantly reduced the exercise-induced increase in fluorescence in the mdx tibialis anterior muscle. A significant decrease in connective tissue area and profibrotic cytokine transforming growth factor-beta(1) was solely found in tibialis anterior muscle. In both diaphragm and gastrocnemius muscle, a significant increase in neural cell adhesion molecule-positive area was instead observed. This data supports the interest toward pentoxifylline and allows insight in the level of cross talk between pathogenetic events in workloaded dystrophic muscle.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.90985.2008DOI Listing
April 2009

Fiber type-related changes in rat skeletal muscle calcium homeostasis during aging and restoration by growth hormone.

Neurobiol Dis 2006 Feb 8;21(2):372-80. Epub 2005 Sep 8.

Division of Pharmacology, Department of Pharmaco-Biology, Faculty of Pharmacy, University of Bari, Bari I-70125, Italy.

The mechanisms by which aging induces muscle impairment are not well understood yet. We studied the impact of aging on Ca2+ homeostasis in the slow-twitch soleus and the fast-twitch extensor digitorum longus (EDL) muscles of aged rats by using the fura-2 fluorescent probe. In both muscles aging increases the resting cytosolic calcium concentration ([Ca2+]i). This effect was independent on calcium influx since a reduced resting permeability of sarcolemma to divalent cations was observed in aged muscles likely due to a reduced activity of leak channels. Importantly the effects of aging on resting [Ca2+]i, fiber diameter, mechanical threshold and sarcolemmal resting conductances were less pronounced in the soleus muscle, suggesting that muscle impairment may be less dependent on [Ca2+]i in the slow-twitch muscle. The treatment of aged rats with growth hormone restored the resting [Ca2+]i toward adult values in both muscles. Thus, an increase of resting [Ca2+]i may contribute to muscle weakness associated with aging and may be considered for developing new therapeutic strategies in the elderly.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2005.07.012DOI Listing
February 2006

A multidisciplinary evaluation of the effectiveness of cyclosporine a in dystrophic mdx mice.

Am J Pathol 2005 Feb;166(2):477-89

Sezione di Farmacologia, Dipartimento Farmacobiologico, Facoltà di Farmacia, Università degli Studi di Bari, Via Orabona 4, Campus, 70125 Bari, Italy.

Chronic inflammation is a secondary reaction of Duchenne muscular dystrophy and may contribute to disease progression. To examine whether immunosuppressant therapies could benefit dystrophic patients, we analyzed the effects of cyclosporine A (CsA) on a dystrophic mouse model. Mdx mice were treated with 10 mg/kg of CsA for 4 to 8 weeks throughout a period of exercise on treadmill, a protocol that worsens the dystrophic condition. The CsA treatment fully prevented the 60% drop of forelimb strength induced by exercise. A significant amelioration (P < 0.05) was observed in histological profile of CsA-treated gastrocnemius muscle with reductions of nonmuscle area (20%), centronucleated fibers (12%), and degenerating area (50%) compared to untreated exercised mdx mice. Consequently, the percentage of normal fibers increased from 26 to 35% in CsA-treated mice. Decreases in creatine kinase and markers of fibrosis were also observed. By electrophysiological recordings ex vivo, we found that CsA counteracted the decrease in chloride conductance (gCl), a functional index of degeneration in diaphragm and extensor digitorum longus muscle fibers. However, electrophysiology and fura-2 calcium imaging did not show any amelioration of calcium homeostasis in extensor digitorum longus muscle fibers. No significant effect was observed on utrophin levels in diaphragm muscle. Our data show that the CsA treatment significantly normalized many functional, histological, and biochemical endpoints by acting on events that are independent or downstream of calcium homeostasis. The beneficial effect of CsA may involve different targets, reinforcing the usefulness of immunosuppressant drugs in muscular dystrophy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1602333PMC
http://dx.doi.org/10.1016/S0002-9440(10)62270-5DOI Listing
February 2005

The alteration of calcium homeostasis in adult dystrophic mdx muscle fibers is worsened by a chronic exercise in vivo.

Neurobiol Dis 2004 Nov;17(2):144-54

Unit of Pharmacology, Department of Pharmacobiology, Faculty of Pharmacy, University of Bari, Bari, Italy.

Chronic exercise in vivo aggravates dystrophy in mdx mice. Calcium homeostasis was evaluated ex vivo by micro-spectrofluorometry on tendon-to-tendon dissected extensor digitorum longus (EDL) muscle fibers. Resting cytosolic calcium ([Ca2+]i) and sarcolemmal permeability through Gd3+ -sensitive mechanosensitive calcium (MsCa) channel were significantly higher in mdx vs. wild-type fibers. The exercise further enhanced [Ca2+]i in mdx fibers and increased sarcolemmal permeability by activating nifedipine-sensitive leak calcium channels. The two genotypes did not differ in caffeine sensitivity and in the excitation-calcium release (ECaR) coupling mechanism by K+ depolarization. The exercise produced a similar adaptation of activation curve of ECaR and of sensitivity to caffeine. However, the inactivation of ECaR of mdx fibers did not adapt to exercise. No fiber phenotype transition occurred in exercised muscle. We provide the first evidence that an in vivo exercise worsens the impaired calcium homeostasis of dystrophic fibers, supporting the role of enhanced calcium entrance in dystrophic progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2004.06.002DOI Listing
November 2004

Taurine and skeletal muscle disorders.

Neurochem Res 2004 Jan;29(1):135-42

Unit of Pharmacology, Department of Pharmacobiology, University of Bari, Italy.

Taurine is abundantly present in skeletal muscle. We give evidence that this amino acid exerts both short-term and long-term actions in the control of ion channel function and calcium homeostasis in striated fibers. Short-term actions can be estimated as the ability of this amino acid to acutely modulate both ion channel gating and the function of the structures involved in calcium handling. Long-term effects can be disclosed in situations of tissue taurine depletion and are likely related to the ability of the intracellular taurine to control transducing pathways as well as homeostatic and osmotic equilibrium in the tissue. The two activities are strictly linked because the intracellular level of taurine modulates the sensitivity of skeletal muscle to the exogenous application of taurine. Myopathies in which ion channels are directly or indirectly involved, as well as inherited or acquired pathologies characterized by metabolic alterations and change in calcium homeostasis, are often correlated with change in muscle taurine concentration and consequently with an enhanced therapeutic activity of this amino acid. We discuss both in vivo and in vitro evidence that taurine, through its ability to control sarcolemmal excitability and muscle contractility, can prove beneficial effects in many muscle dysfunctions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1023/b:nere.0000010442.89826.9cDOI Listing
January 2004

Decrease in resting calcium and calcium entry associated with slow-to-fast transition in unloaded rat soleus muscle.

FASEB J 2003 Oct 15;17(13):1916-8. Epub 2003 Aug 15.

Sezione di Farmacologia, Dipartimento Farmaco-Biologico, Università degli Studi di Bari, Via Orabona 4-Campus, 70125, Bari, Italy.

Using fura-2 and the manganese quenching technique, we show here that sarcolemmal permeability to cations (SP-Ca) of slow-twitch muscles is greater than that of fast-twitch ones. This appears to be related to a higher expression and/or activity of stretch-activated channels, whereas leak channel activities are similar. During hindlimb suspension (HU), we found highly correlated decreases in SPCa and resting calcium of soleus muscle toward values of extensor digitorum longus (EDL) muscle. This was significant as soon as 3 days of suspension, contrary to soleus muscle caffeine sensitivity and responsiveness that were not modified after this HU period. After 14 days of HU, SP-Ca, resting calcium, and caffeine response of soleus muscle became similar to that normally observed in EDL muscle. These results demonstrate that the correlated decreases in SP-Ca and resting calcium precede most functional changes due to HU. Given the known shortening of HU soleus muscle, we proposed that this could induce a decrease of SP-Ca and a consequent reduction of resting calcium. According to the crucial role of resting cytosolic free calcium in the maintenance and the adaptation of muscle phenotype, our results suggest that slow-to-fast transition of HU soleus muscle is calcium dependent.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.02-1012fjeDOI Listing
October 2003

Growth hormone secretagogues modulate the electrical and contractile properties of rat skeletal muscle through a ghrelin-specific receptor.

Br J Pharmacol 2003 Jun;139(3):575-84

Unit of Pharmacology, Department of Pharmacobiology, Faculty of Pharmacy, University of Bari, Italy.

(1) Growth hormone secretagogues (GHS) exhibit potent growth hormone (GH)-releasing activity through the activation of a pituitary receptor. Here, we consider the possibility that GHS can target a specific receptor in rat skeletal muscle and have a role in the control of muscle function. (2) By means of the intracellular microelectrode technique, we found that in vitro application of hexarelin and L-163,255 dose dependently reduced resting chloride (gCl) and potassium (gK) conductances in rat skeletal muscle. These effects were prevented by the GHS-receptor antagonist [D-Lys-3]-GHRP-6, and by either phospholipase C or protein kinase C (PKC) inhibitors. Ghrelin, a natural ligand of GHS receptors, also induced a reduction of muscle gCl and gK, which was antagonised by [D-Lys-3]-GHRP-6. (3) Both GHS shifted the mechanical threshold for the contraction of muscle fibres towards more negative voltages. Accordingly, by means of FURA-2 fluorescent measurements, we demonstrated that L-163,255 induced a resting [Ca(2+)](i) increase, which was reversible and not blocked by nifedipine or removal of external Ca(2+). (4) Ageing is a condition characterised by a deficit of GH secretion, which in turn modifies the electrical and contractile properties of skeletal muscle. In contrast to GH, chronic treatment of aged rats with hexarelin or L-163,255 failed to restore the electrical and contractile muscle properties. Moreover, the two GHS applied in vitro were able to antagonise the beneficial effect on gCl and gK obtained through chronic treatment of aged animals with GH. (5) Thus, skeletal muscle expresses a specific GHS receptor able to decrease gCl and gK through a PKC-mediated intracellular pathway. This peripheral action may account for the lack of restoration of skeletal muscle function in long-term GHS-treated aged animals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.bjp.0705284DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573883PMC
June 2003

Enhanced dystrophic progression in mdx mice by exercise and beneficial effects of taurine and insulin-like growth factor-1.

J Pharmacol Exp Ther 2003 Jan;304(1):453-63

Department of Pharmacobiology, Unit of Pharmacology, University of Bari, Bari, Italy.

A preclinical screening for prompt-to-use drugs that are safer than steroids and beneficial in Duchenne muscular dystrophy was performed. Compounds able to reduce calcium-induced degeneration (taurine or creatine 10% in chow) or to stimulate regeneration [insulin-like growth factor-1 (IGF-1); 50 or 500 microg/kg s.c.] were administered for 4 to 8 weeks to mdx mice undergoing chronic exercise on a treadmill, a protocol to worsen dystrophy progression. alpha-Methyl-prednisolone (PDN; 1 mg/kg) was used as positive control. The effects were evaluated in vivo on forelimb strength and in vitro electrophysiologically on the macroscopic chloride conductance (gCl), an index of degeneration-regeneration events in mdx muscles, and on the mechanical threshold, a calcium-sensitive index of excitation-contraction coupling. The exercise produced a significant weakness and an impairment of gCl, by further decreasing the already low value of degenerating diaphragm (DIA) and fully hampering the increase of gCl typical of regenerating extensor digitorum longus (EDL) mdx muscle. The already negative voltage threshold for contraction of mdx EDL was also slightly worsened. Taurine > creatine > IGF-1 counteracted the exercise-induced weakness. The amelioration of gCl was drug- and muscle-specific: taurine was effective in EDL, but not in DIA muscle; IGF-1 and PDN were fully restorative in both muscles, whereas creatine was ineffective. An acute effect of IGF-1 on gCl was observed in vitro in untreated, but not in IGF-1-treated exercised mdx muscles. Taurine > PDN > IGF-1, but not creatine, significantly ameliorated the negative threshold voltage values of the EDL fibers. The results predict a potential benefit of taurine and IGF-1 for treating human dystrophy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.102.041343DOI Listing
January 2003