Publications by authors named "Bing Shen How"

5 Publications

  • Page 1 of 1

Life-cycle assessment of hydrogen production via catalytic gasification of wheat straw in the presence of straw derived biochar catalyst.

Bioresour Technol 2021 Aug 21;341:125796. Epub 2021 Aug 21.

HICoE - Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia.

The environmental footprints of Hproductionviacatalytic gasification of wheat straw using straw-derived biochar catalysts were examined. The functional unit of 1 kg of Hwas adopted in the system boundaries, which includes 5 processes namely biomass collection and pre-treatment units (P1), biochar catalyst preparation using fast pyrolysis unit (P2), two-stage pyrolysis-gasification unit (P3), products separation unit (P4), and Hdistribution to downstream plants (P5). Based on the life-cycle assessment, the hot spots in this process were identified, the sequence was as follows: P4 > P2 > P1 > P3 > P5. The end-point impacts score for the process was found to be 93.4017 mPt. From benchmarking analysis, the proposed straw-derived biochar catalyst was capable of offering almost similar catalytic performance with other metal-based catalysts with a lower environmental impact.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.125796DOI Listing
August 2021

Transition Metal Dichalcogenides for the Application of Pollution Reduction: A Review.

Nanomaterials (Basel) 2020 May 26;10(6). Epub 2020 May 26.

State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.

The material characteristics and properties of transition metal dichalcogenide (TMDCs) have gained research interest in various fields, such as electronics, catalytic, and energy storage. In particular, many researchers have been focusing on the applications of TMDCs in dealing with environmental pollution. TMDCs provide a unique opportunity to develop higher-value applications related to environmental matters. This work highlights the applications of TMDCs contributing to pollution reduction in (i) gas sensing technology, (ii) gas adsorption and removal, (iii) wastewater treatment, (iv) fuel cleaning, and (v) carbon dioxide valorization and conversion. Overall, the applications of TMDCs have successfully demonstrated the advantages of contributing to environmental conversation due to their special properties. The challenges and bottlenecks of implementing TMDCs in the actual industry are also highlighted. More efforts need to be devoted to overcoming the hurdles to maximize the potential of TMDCs implementation in the industry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nano10061012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353444PMC
May 2020

Uncertainty estimation approach in catalytic fast pyrolysis of rice husk: Thermal degradation, kinetic and thermodynamic parameters study.

Bioresour Technol 2019 Dec 31;294:122089. Epub 2019 Aug 31.

National HiCoE Thermochemical Conversion of Biomass, Centre for Biofuel and Biochemical Research, Institute of Sustainable Building, Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia.

The aim of this study was to understand the influence of catalyst in thermal degradation behavior of rice husk (RH) in catalytic fast pyrolysis (CFP) process. An iso-conversional Kissinger kinetic model was introduced into this study to understand the activation energy (E), pre-exponential value (A), Enthalpy (ΔH), Entropy (ΔS) and Gibb's energy (ΔG) of non-catalytic fast pyrolysis (NCFP) and CFP of RH. The study revealed that the addition of natural zeolite catalyst enhanced the rate of devolatilization and decomposition of RH associated with lowest E value (153.10 kJ/mol) compared to other NCFP and CFP using nickel catalyst. Lastly, an uncertainty estimation was applied on the best fit non-linear regression model (MNLR) to identify the explanatory variables. The finding showed that it had the highest probability to obtain 73.8-74.0% mass loss in CFP of rice husk using natural zeolite catalyst.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2019.122089DOI Listing
December 2019

Catalytic thermal degradation of Chlorella vulgaris: Evolving deep neural networks for optimization.

Bioresour Technol 2019 Nov 8;292:121971. Epub 2019 Aug 8.

Brno University of Technology, Institute of Process Engineering & NETME Centre, Technicka 2896/2, 616 69 Brno, Czech Republic.

The aim of this study is to identify the optimum thermal conversion of Chlorella vulgaris with neuro-evolutionary approach. A Progressive Depth Swarm-Evolution (PDSE) neuro-evolutionary approach is proposed to model the Thermogravimetric analysis (TGA) data of catalytic thermal degradation of Chlorella vulgaris. Results showed that the proposed method can generate predictions which are more accurate compared to other conventional approaches (>90% lower in Root Mean Square Error (RMSE) and Mean Bias Error (MBE)). In addition, Simulated Annealing is proposed to determine the optimal operating conditions for microalgae conversion from multiple trained ANN. The predicted optimum conditions were reaction temperature of 900.0 °C, heating rate of 5.0 °C/min with the presence of HZSM-5 zeolite catalyst to obtain 88.3% of Chlorella vulgaris conversion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2019.121971DOI Listing
November 2019

An overview of biomass thermochemical conversion technologies in Malaysia.

Sci Total Environ 2019 Aug 18;680:105-123. Epub 2019 Apr 18.

Department of Chemical and Environmental Engineering, University of Nottingham, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.

The rising pressure on both cleaner production and sustainable development have been the main driving force that pushes mankind to seek for alternative greener and sustainable feedstocks for chemical and energy production. The biomass 'waste-to-wealth' concept which convert low value biomass into value-added products which contain high economic potential, have attracted the attentions from both academicians and industry players. With a tropical climate, Malaysia has a rich agricultural sector and dense tropical rainforest, giving rise to abundance of biomass which most of them are underutilized. Hence, the biomass 'waste-to-wealth' conversion through various thermochemical conversion technologies and the prospective challenges towards commercialization in Malaysia are reviewed in this paper. In this paper, a critical review about the maturity status of the four most promising thermochemical conversion routes in Malaysia (i.e. gasification, pyrolysis, liquefaction and hydroprocessing) is given. The current development of thermochemical conversion technologies for biomass conversion in Malaysia is also reviewed and benchmarked against global progress. Besides, the core technical challenges in commercializing these green technologies are highlighted as well. Lastly, the future outlook for successful commercialization of these technologies in Malaysia is included.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.04.211DOI Listing
August 2019
-->