Publications by authors named "Bilal Marie"

1 Publications

  • Page 1 of 1

Hydrophobically Modified Isosorbide Dimethacrylates as a Bisphenol-A (BPA)-Free Dental Filling Material.

Materials (Basel) 2021 Apr 22;14(9). Epub 2021 Apr 22.

Interdisciplinary Program in Materials Science and Engineering, New Jersey Institute of Technology, Newark, NJ 07012, USA.

A series of bio-based hydrophobically modified isosorbide dimethacrylates, with , , and benzoate aromatic spacers (ISBGBMA), are synthesized, characterized, and evaluated as potential dental restorative resins. The new monomers, isosorbide 2,5-bis(4-glyceryloxybenzoate) dimethacrylate (ISB4GBMA), isosorbide 2,5-bis(3-glyceryloxybenzoate) dimethacrylate (ISB3GBMA), and isosorbide 2,5-bis(2-glyceryloxybenzoate) dimethacrylate (ISB2GBMA), are mixed with triethylene glycol dimethacrylate (TEGDMA) and photopolymerized. The resulting polymers are evaluated for the degree of monomeric conversion, polymerization shrinkage, water sorption, glass transition temperature, and flexural strength. Isosorbide glycerolate dimethacrylate (ISDGMA) is synthesized, and Bisphenol A glycerolate dimethacrylate (BisGMA) is prepared, and both are evaluated as a reference. Poly(ISBGBMA/TEGDMA) series shows lower water sorption (39-44 µg/mm) over Poly(ISDGMA/TEGDMA) (73 µg/mm) but higher than Poly(BisGMA/TEGDMA) (26 µg/mm). Flexural strength is higher for Poly(ISBGBMA/TEGDMA) series (37-45 MPa) over Poly(ISDGMA/TEGDMA) (10 MPa) and less than Poly(BisGMA/TEGDMA) (53 MPa) after immersion in phosphate-buffered saline (DPBS) for 24 h. Poly(ISB2GBMA/TEGDMA) has the highest glass transition temperature at 85 °C, and its monomeric mixture has the lowest viscosity at 0.62 Pa·s, among the (ISBGBMA/TEGDMA) polymers and monomer mixtures. Collectively, this data suggests that the ortho ISBGBMA monomer is a potential bio-based, BPA-free replacement for BisGMA, and could be the focus for future study.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ma14092139DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122847PMC
April 2021
-->