Publications by authors named "Bhargav Sanketi"

2 Publications

  • Page 1 of 1

The asymmetric Pitx2 gene regulates gut muscular-lacteal development and protects against fatty liver disease.

Cell Rep 2021 Nov;37(8):110030

Department of Molecular Medicine, College of Veterinary Medicine, Cornell, Ithaca, NY 14853, USA. Electronic address:

Intestinal lacteals are essential lymphatic channels for absorption and transport of dietary lipids and drive the pathogenesis of debilitating metabolic diseases. However, organ-specific mechanisms linking lymphatic dysfunction to disease etiology remain largely unknown. In this study, we uncover an intestinal lymphatic program that is linked to the left-right (LR) asymmetric transcription factor Pitx2. We show that deletion of the asymmetric Pitx2 enhancer ASE alters normal lacteal development through the lacteal-associated contractile smooth muscle lineage. ASE deletion leads to abnormal muscle morphogenesis induced by oxidative stress, resulting in impaired lacteal extension and defective lymphatic system-dependent lipid transport. Surprisingly, activation of lymphatic system-independent trafficking directs dietary lipids from the gut directly to the liver, causing diet-induced fatty liver disease. Our study reveals the molecular mechanism linking gut lymphatic function to the earliest symmetry-breaking Pitx2 and highlights the important relationship between intestinal lymphangiogenesis and the gut-liver axis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2021.110030DOI Listing
November 2021

Changes in Nkx2.1, Sox2, Bmp4, and Bmp16 expression underlying the lung-to-gas bladder evolutionary transition in ray-finned fishes.

Evol Dev 2020 09;22(5):384-402

Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA.

The key to understanding the evolutionary origin and modification of phenotypic traits is revealing the responsible underlying developmental genetic mechanisms. An important organismal trait of ray-finned fishes is the gas bladder, an air-filled organ that, in most fishes, functions for buoyancy control, and is homologous to the lungs of lobe-finned fishes. The critical morphological difference between lungs and gas bladders, which otherwise share many characteristics, is the general direction of budding during development. Lungs bud ventrally and the gas bladder buds dorsally from the anterior foregut. We investigated the genetic underpinnings of this ventral-to-dorsal shift in budding direction by studying the expression patterns of known lung genes (Nkx2.1, Sox2, and Bmp4) during the development of lungs or gas bladder in three fishes: bichir, bowfin, and zebrafish. Nkx2.1 and Sox2 show reciprocal dorsoventral expression patterns during tetrapod lung development and are important regulators of lung budding; their expression during bichir lung development is conserved. Surprisingly, we find during gas bladder development, Nkx2.1 and Sox2 expression are inconsistent with the hypothesis that they regulate the direction of gas bladder budding. Bmp4 is expressed ventrally during lung development in bichir, akin to the pattern during mouse lung development. During gas bladder development, Bmp4 is not expressed. However, Bmp16, a paralogue of Bmp4, is expressed dorsally in the developing gas bladder of bowfin. Bmp16 is present in the known genomes of Actinopteri (ray-finned fishes excluding bichir) but absent from mammalian genomes. We hypothesize that Bmp16 was recruited to regulate gas bladder development in the Actinopteri in place of Bmp4.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ede.12354DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8013215PMC
September 2020
-->